若雙曲線
x2
a2
-
y2
b2
=1
的焦點到其漸近線的距離等于實軸長,則該雙曲線的離心率為(  )
A、
5
B、5
C、
2
D、2
分析:由已知中雙曲線的焦點到其漸近線的距離等于實軸長,通過漸近線、離心率等幾何元素,溝通a,b,c的關(guān)系,即可求出該雙曲線的離心率.
解答:解:∵焦點到漸近線的距離等于實軸長,
∴b=2a,
∴e2=
c2
a2
=1+
b2
a2
=5、
∴e=
5

故選A.
點評:本題考查的知識點是雙曲線的簡單性質(zhì),雙曲線的漸近線與離心率存在對應關(guān)系,通過a,b,c的比例關(guān)系可以求離心率,也可以求漸近線方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1
的漸近線方程為y=±
3
2
x
,則其離心率為(  )
A、
13
2
B、
13
3
C、
2
13
3
13
D、
13
2
13
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±
3
2
x,則雙曲線的離心率為( 。
A、
7
2
B、
3
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
,則雙曲線的一條漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
8
=1
的一個焦點為(4,0),則雙曲線的漸近線方程為
y=±x
y=±x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y=x2+2相切,則此雙曲線的漸近線方程為( 。

查看答案和解析>>

同步練習冊答案