設(shè)橢圓過(guò)點(diǎn)M(,1),且左焦點(diǎn)為
(1)求橢圓C的方程;
(2)判斷是否存在經(jīng)過(guò)定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足·,若存在求出直線l的方程,不存在說(shuō)明理由.
解:(1)∵左焦點(diǎn)為F1(﹣,0),
∴c2=a2﹣b2=2,
∵橢圓過(guò)點(diǎn)M(,1),
,
聯(lián)立,得a2=4,b2=2,
∴橢圓C方程:
(2)存在經(jīng)過(guò)定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足
設(shè)直線l為y=kx+2,把y=kx+2代入,并整理,得(2k2+1)x2+8kx+4=0,
設(shè)A(x1,y1),B(x2,y2),
,
y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
,∴,
∴x1x2+y1y2=0,
,
解得k=
∴直線l為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)M(
2
,1)
,且左焦點(diǎn)為F1(-
2
,0)

(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足|
AP
|
|
QB
|
=|
AQ
|
|
PB
|
,證明:點(diǎn)Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)M(
2
,1)
,離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足
|
AP
|
|
PB
|
=
|
AQ
|
|
QB
|
=λ,證明:點(diǎn)Q的軌跡與λ無(wú)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓方程為x2+=1,過(guò)點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足Equation.3=Equation.3+Equation.3),點(diǎn)N的坐標(biāo)為(,).當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:

(1)動(dòng)點(diǎn)P的軌跡方程;

(2)|Equation.3|的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓數(shù)學(xué)公式過(guò)點(diǎn)M(數(shù)學(xué)公式,1),且左焦點(diǎn)為數(shù)學(xué)公式
(1)求橢圓C的方程;
(2)判斷是否存在經(jīng)過(guò)定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足數(shù)學(xué)公式數(shù)學(xué)公式,若存在求出直線l的方程,不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案