【題目】已知{an}是等差數列,其中a1=25,a4=16
(1)求{an}的通項;
(2)求a1+a3+a5+…+a19值.
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:4x2﹣y2=4及直線l:y=kx﹣1
(1)求雙曲線C的漸近線方程及離心率;
(2)直線l與雙曲線C左右兩支各有一個公共點,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據現行國家標準GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75毫克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.從某自然保護區(qū)2012年全年每天的PM2.5監(jiān)測值數據中隨機地抽取10天的數據作為樣本,監(jiān)測值頻數如表所示:
PM2.5日均值 | [25,35] | (35,45] | (45,55] | (55,65] | (65,75] | (75,85] |
頻數 | 3 | 1 | 1 | 1 | 1 | 3 |
(1)從這10天的PM2.5日均值監(jiān)測數據中,隨機抽取3天,求恰有1天空氣質量達到一級的概率;
(2)從這10天的數據中任取3天數據,記ξ表示抽到PM2.5監(jiān)測數據超標的天數,求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質量狀況,則一年(按366天算)中平均有多少天的空氣質量達到一級或二級.(精確到整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】Sn表示等差數列{an}的前n項的和,且S4=S9 , a1=﹣12
(1)求數列的通項an及Sn;
(2)求和Tn=|a1|+|a2|+…+|an|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn=2an﹣2,數列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數列{an},{bn}的通項公式;
(2)設cn= ,求數列{cn}的前2n項和T2n .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的通項公式為an=25﹣n , 數列{bn}的通項公式為bn=n+k,設cn= 若在數列{cn}中,c5≤cn對任意n∈N*恒成立,則實數k的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com