(2012•惠州模擬)已知|
a
|=6,|
b
|=6
2
,若t
a
+
b
與t
a
-
b
的夾角為鈍角,則t的取值范圍為
(-
2
,0)∪(0,
2
(-
2
,0)∪(0,
2
分析:由題意可得(t
a
+
b
)•(t
a
-
b
)
<0,解得-
2
<t<
2
.注意當(dāng)t=0時(shí),t
a
+
b
與t
a
-
b
 的夾角等于π,不滿足條件,由此求得t的取值范圍.
解答:解:若t
a
+
b
與t
a
-
b
的夾角為鈍角,則(t
a
+
b
)•(t
a
-
b
)
<0,
化簡可得 36t2-72<0,-
2
<t<
2

當(dāng)t=0時(shí),t
a
+
b
與t
a
-
b
 的夾角等于π,不滿足條件,
∴t的取值范圍為(-
2
,0)∪(0,
2
),
故答案為 (-
2
,0)∪(0,
2
).
點(diǎn)評:本題主要考查用兩個(gè)向量的數(shù)量積表示兩個(gè)向量的夾角,注意去掉t
a
+
b
與t
a
-
b
 的夾角等于π的情況,這是解題的易錯(cuò)點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知實(shí)數(shù)4,m,9構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線
x2
m
+y2=1
的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知橢圓C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的離心率為
6
3
,且經(jīng)過點(diǎn)(
3
2
,
1
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(0,2)的直線交橢圓C于A,B兩點(diǎn),求△AOB(O為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點(diǎn).
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)計(jì)算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步練習(xí)冊答案