2.已知集合A={x|x+2>0},B={x|x2+2x-3≤0},則A∩B=(  )
A.[-3,-2)B.[-3,-1]C.(-2,1]D.[-2,1]

分析 化簡集合A、B,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={x|x+2>0}={x|x>-2},
B={x|x2+2x-3≤0}={x|-3≤x≤1},
則A∩B={x|-2<x≤1}=(-2,1].
故選:C.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓過點A(2,-$\frac{4\sqrt{5}}{3}$)、B(-1,$\frac{8\sqrt{2}}{3}$)求橢圓的標準方程,頂點坐標,焦點坐標及離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.復數(shù)(i-1-i)3的虛部為( 。
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2+x-lnx在x=a處的切線與直線2x+2y-1=0垂直,則a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函數(shù)y=f(x)-$\frac{t}{3}$x(t>0)至少有9個零點,則t的取值范圍為( 。
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在區(qū)間[-3,3]中隨機取一個實數(shù)k,則事件“直線y=kx與圓(x-2)2+y2=1相交”發(fā)生的概率為( 。
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若復數(shù)$z=\frac{4-2i}{1+i}$(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若復數(shù)(a2+i)(1+ai)(a∈R)是實數(shù),則實數(shù)a的值為(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-{x^2}$+ax在x=-1是取得極值.
(1)求實數(shù)a的值;
(2)求函數(shù)y=f(x)在區(qū)間[-2,0)上的最大值和最小值.

查看答案和解析>>

同步練習冊答案