19.已知點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為( 。
A.-2B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{1}{2}$

分析 由題意求得拋物線方程,求得焦點(diǎn)坐標(biāo),利用直線的斜率公式即可求得直線AF的斜率.

解答 解:由點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,
即-2=-$\frac{p}{2}$,則p=4,
故拋物線的焦點(diǎn)坐標(biāo)為:(2,0),
則直線AF的斜率k=$\frac{3-0}{-2-2}$=-$\frac{3}{4}$,
故選C.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單幾何性質(zhì),拋物線的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3+x.
(1)求定積分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲線y=f(x)的一條切線經(jīng)過(guò)點(diǎn)(0,-2),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$.cos∠BAD=-$\frac{\sqrt{7}}{14}$,sin∠CBA=$\frac{\sqrt{21}}{6}$,則BC的長(zhǎng)為( 。
A.$\sqrt{7}$B.2C.3D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$y=tan(\frac{π}{4}-x)$的定義域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+ax2+bx+ab,x∈R,其中a,b∈R.
(Ⅰ)若函數(shù)f(x)在x=1處有極小值-$\frac{22}{3}$,求a.b的值;
(Ⅱ)若|a|>1,設(shè)g(x)=|f′(x)|,求證:當(dāng)x∈[-1,1]時(shí),g(x)max>2;
(Ⅲ)若a>1,b<1-2a,對(duì)于給定x1,x2∈(-∞,1),x1<x2,α=mx1+(1-m)x2,β=(1-m)x1+mx2,其中m∈R,α<1,β<1,若|f(α)-f(β)|<|f(x1)-f(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求取球次數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{4}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則方程$f(x)=\frac{1}{2}$的解集為( 。
A.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$B.$\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$C.$\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$D.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從裝有3個(gè)紅球和3個(gè)白球的口袋里任取3個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是(  )
A.至少2個(gè)白球,都是紅球B.至少1個(gè)白球,至少1個(gè)紅球
C.至少2個(gè)白球,至多1個(gè)白球D.恰好1個(gè)白球,恰好2個(gè)紅球

查看答案和解析>>

同步練習(xí)冊(cè)答案