a>0,b>0,則下列等式中不成立的是

[  ]

A.a+b+

B.(a+b)()≥4

C.≥a+b

D.

答案:D
解析:

  利用基本不等式即可.

  對于A:a+b+,當(dāng)且僅當(dāng)a=b時取等號,所以成立.

  對于B:(a+b)()≥·2=4,當(dāng)且僅當(dāng)a=b時取等號,所以成立.

  對于C:≥(a+b)·=a+b,當(dāng)且僅當(dāng)a=b時取等號,所以C成立.

  對于D:,所以D錯誤.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線將平面劃分為“上、下、左、右”四個區(qū)域(不含邊界),若點(1,2)在“上”區(qū)域內(nèi),則雙曲線離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)在約束條件
x≤1
y≤2
x+y-1≥0
下,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則ab的最大值等于
1
8
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宿遷一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
,A,C分別是雙曲線虛軸的上、下端點,B,F(xiàn)分別是雙曲線的左頂點和左焦點.若雙曲線的離心率為2,則
BA
CF
夾角的余弦值為
7
14
7
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若目標(biāo)函數(shù)z=ax+by(a>0,b>0)在約束條件
x-y≥0
2x-y-2≤0
x≥0
下的最大值是4,則直線ax+by-1=0截圓x2+y2=1所得的弦長的范圍是
[
2
3
)
[
2
,
3
)

查看答案和解析>>

同步練習(xí)冊答案