5.若長方體從一個頂點出發(fā)的三條棱長分別為3,4,5,則該長方體的外接球表面積為(  )
A.50πB.100πC.150πD.200π

分析 用長方體的對角線的公式,求出長方體的對角線長,即為外接球的直徑,從而得到外接球的半徑,用球的表面積公式可以算出外接球的表面積.

解答 解:∵長方體從同一頂點出發(fā)的三條棱的長分別為3,4,5,
∴長方體的對角線長為:$\sqrt{{3}^{2}+{4}^{2}+{5}^{2}}$=5$\sqrt{2}$,
∵長方體的對角線長恰好是外接球的直徑
∴球半徑為R=$\frac{5\sqrt{2}}{2}$,可得球的表面積為4πR2=50π.
故選:A.

點評 本題給出長方體的長、寬、高,求長方體外接球的表面積,著重考查了長方體對角線公式和球的表面積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某制造商為運動會生產(chǎn)一批直徑為40mm的乒乓球,現(xiàn)隨機(jī)抽樣檢查20只,測得每只球的直徑(單位:mm,保留兩位小數(shù))如下:
40.02 40.00 39.98 40.00 39.99
40.00 39.98 40.01 39.98 39.99
40.00 39.99 39.95 40.01 40.02
39.98 40.00 39.99 40.00 39.96
(1)完成下面的頻率分布表,并畫出頻率分布直方圖;
分組頻數(shù)頻率$\frac{頻率}{組距}$
[39.95,39.97)2             0.10                  5                  
[39.97,39.99)40.2010
[39.99,40.01)100.5025
[40.01,40.03]40.2010
合計201.0050
(2)假定乒乓球的直徑誤差不超過0.02mm為合格品,若這批乒乓球的總數(shù)為10 000只,試根據(jù)抽樣檢查結(jié)果估計這批產(chǎn)品的合格只數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=1,an+1=Sn+2n+2(n∈N*),
(1)當(dāng)n∈N*且n≥2時,數(shù)列{an+2}是否是等比數(shù)列?給出你的結(jié)論并加以證明; 
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.角α的終邊經(jīng)過點(3,4),則$\frac{sinα+cosα}{sinα-cosα}$=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若△ABC中,AC=$\sqrt{3}$,A=45°,C=75°,則BC=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,則下列各式成立的是( 。
A.$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$C.$\overrightarrow{BC}$=-$\overrightarrow{AC}$+$\overrightarrow{AB}$D.$\overrightarrow{BC}$=-$\overrightarrow{AC}$-$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個水平放置的邊長為4的等邊△ABC,運用斜二測畫法得到直觀圖為△A′B′C′,則△A′B′C′的面積為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC,若沿AB將三角形PAB折起,使∠PAD=θ,構(gòu)成四棱錐P-ABCD,且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2.

(1)求證:平面BEF⊥平面PAB;
(2)當(dāng)異面直線BF與PA所成的角為$\frac{π}{3}$時,求折起的角度θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ是參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點A,B,C,D的極坐標(biāo)分別為(2,$\frac{π}{6}$)、(2,$\frac{5π}{6}$)、(2,$\frac{7π}{6}$)、(2,$\frac{11π}{6}$)
(Ⅰ)求點A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為C上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案