如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來(lái)計(jì)算,則如圖2,過(guò)拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.

解:設(shè)切點(diǎn)A的坐標(biāo)為(a,3a2),(1分)
則y′|x=a=6a所以切線l的方程為:
y-3a2=6a(x-a),令y=0
得x=,令x=2得y=12a-3a2,(3分)
所以=,
,(5分)
則轉(zhuǎn)化為求在a∈[0,2]時(shí)的最小值,
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/10005.png' />,由(7分)
解得或a=4,因?yàn)閒(0)=8,f(2)=2,.(9分)
所以當(dāng),f(a)取得最小值.因此面積S1+S2的最小值
分析:設(shè)切點(diǎn)A的坐標(biāo)為(a,3a2),切線l的方程為y-3a2=6a(x-a),令y=0得x=,令x=2得y=12a-3a2,所以=,記,轉(zhuǎn)化為求在a∈[0,2]時(shí)的最小值.
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到面積s1+s2的最小值的求法及直線與拋物線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來(lái)計(jì)算,則如圖2,過(guò)拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8.

(1)求此拋物線的解析式;

(2)如圖2,若P點(diǎn)為拋物線上不同于A的一點(diǎn),連接PB并延長(zhǎng)交拋物線于點(diǎn)Q,過(guò)點(diǎn)P、Q分別作x軸的垂線,垂足分別為S、R.

①求證:PB=PS;

②判斷△SBR的形狀;

③試探索在線段SR上是否存在點(diǎn)M,使得以點(diǎn)P、S、M為頂點(diǎn)的三角形和以點(diǎn)Q、R、M為頂點(diǎn)的三角形相似?若存在,請(qǐng)找出M點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

如圖所示,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、BC、D四個(gè)點(diǎn).

(1)r的取值范圍;

(2)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市學(xué)軍中學(xué)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來(lái)計(jì)算,則如圖2,過(guò)拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案