14.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了若干名學(xué)生的體檢表,并得到 如直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年紀(jì)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如圖表中數(shù)據(jù):
1-50951-1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學(xué)生中,在不近視的學(xué)生中按照成績(jī)是否在前50名分層抽樣抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (I)利用頻率的計(jì)算方法,等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì)即可得出.
(II)根據(jù)k2的計(jì)算公式,根據(jù)獨(dú)立性檢驗(yàn)基本思想即可得出結(jié)論.

解答 解:(Ⅰ)設(shè)各組的頻率為fi(i=1,2,3,4,5,6),
依題意,前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,故f1=0.15×0.2=0.03,f2=0.45×0.2=0.09,${f_3}=\frac{{{f_2}^2}}{f_1}=0.27$.
∴由$\frac{{({f_3}+{f_6})•4}}{2}=1-(0.03+0.09)$,可得f6=0.17,
∴視力在5.0以下的頻率為1-0.17=0.83,
故全年級(jí)視力在5.0以下的人數(shù)約為1000×0.83=830.
(Ⅱ) ${k^2}=\frac{{100×{{(41×18-32×9)}^2}}}{50×50×73×27}=\frac{300}{73}≈4.110>3.841$,
因此在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系.
(Ⅲ)依題意9人中年級(jí)名次在1~50名和951~1000名分別有3人和6人,X可取0,1,2,3,$P(X=0)=\frac{C_6^3}{C_9^3}=\frac{20}{84}$,$P(X=1)=\frac{C_6^2C_3^1}{C_9^3}=\frac{45}{84}$,$P(X=2)=\frac{C_6^1C_3^2}{C_9^3}=\frac{18}{84}$,$P(X=3)=\frac{C_3^3}{C_9^3}=\frac{1}{84}$,
X的分布列為:

X的數(shù)學(xué)期望$E(X)=0×\frac{20}{84}+1×\frac{45}{84}+2×\frac{18}{84}+3×\frac{1}{84}=1$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的性質(zhì)及其應(yīng)用、古典概率計(jì)算公式、超幾何分布列及其數(shù)學(xué)期望的計(jì)算公式、獨(dú)立性檢驗(yàn)基本思想,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)若a=-$\frac{{e}^{2}}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a∈(2,+∞)時(shí),f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.①歸納推理是由一般到一般的推理;②歸納推理是由部分到整體的推理;
③演繹推理是由一般到特殊的推理;④類比推理是由特殊到特殊的推理;
⑤類比推理是由特殊到一般的推理;
正確的是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.二項(xiàng)式(x+$\frac{1}{2x}$)8的展開(kāi)式中x4項(xiàng)的系數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+2=2an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2log2an,數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和為T(mén)n,證明:Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最小值為( 。
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{2{x^2}+x-3}$+log3(3+2x-x2)的定義域?yàn)閇1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表:
年份20102011201220132014
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y (千億元)567810
(1)求y關(guān)于t回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t;
用所求回歸方程預(yù)測(cè)該地區(qū)2016年(t=7)人民幣儲(chǔ)蓄存款.
附:回歸直線方程$\widehat{y}$=$\widehat{a}$+$\widehat$t中,$\widehat$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a5=a3•${∫}_{0}^{2}$(2x+$\frac{1}{2}$)dx,則$\frac{{S}_{9}}{{S}_{5}}$=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案