【題目】若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|

【答案】C
【解析】解:當ab>0時,∵a>b,∴ , 但A選項中沒有ab>0的條件,如果a>0,b<0,則a>b時, , ∴A選項不正確;
當a>0,b>0時,∵a>b,∴a2>b2 , 但B選項中沒有a>0,b>0的條件,如果a=3,b=﹣5,則a>b,∴a2=32=9,b2=(﹣5)2=25,即a2<b2 , 所以B選項也不正確;
在C選項中,∵c2+1>0,a>b,∴a(c2+1)>b(c2+1),即C選項為正確選項;
在D選項中,∵|c|≥0,a>b,∴a|c|≥b|c|,∴D選項也不正確.
故選C.
題中給了一個條件a>b,四個選項就是在考四條不等式的基本性質.逐個選項應用性質進行簡單證明,即可得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式(kx﹣k2﹣4)(x﹣4)>0,其中k∈R;
(1)當k=4時,求上述不等式的解集;
(2)當上述不等式的解集為(﹣5,4)時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x),f(0)≠0,當x>0時,f(x)>1,對任意的a,b∈R都有f(a+b)=f(a)f(b)且對任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)證明:函數(shù)y=f(x)在R上是增函數(shù);
(3)若f(x)f(2x﹣x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式的解集是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在R上的偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調遞減,若f(1﹣m)<f(m),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四圖,都是同一坐標系中三次函數(shù)及其導函數(shù)的圖象,其中一定正確的序號是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x(|x|+4),且f(a2)+f(a)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面上的動點P(x,y)及兩定點A(﹣2,0),B(2,0),直線PA,PB的斜率分別是 k1 , k2
(1)求動點P的軌跡C的方程;
(2)設直線l:y=kx+m與曲線C交于不同的兩點M,N. ①若OM⊥ON(O為坐標原點),證明點O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足 ,證明直線l過定點,并求出這個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當x∈(0,1)時,tf(2x)≥2x﹣1恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案