考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:分別表示出anan+1an+2=an+an+1+an+2,an+1an+2an+3=an+1+an+2+an+3,兩式相減可推斷出an+3=an,進而可知數(shù)列{an}是以3為周期的數(shù)列,由此能求出結果.
解答:
解:依題意可知,a
na
n+1a
n+2=a
n+a
n+1+a
n+2,
a
n+1a
n+2a
n+3=a
n+1+a
n+2+a
n+3,
兩式相減得a
n+1a
n+2(a
n+3-a
n)=a
n+3-a
n,
∵a
n+1a
n+2≠1,
∴a
n+3-a
n=0,即a
n+3=a
n,
∴數(shù)列{a
n}是以3為周期的數(shù)列,
∵a
1a
2a
3=a
1+a
2+a
3,
∴a
3=3
∴
2007 |
|
i=1 |
ai=S
2007=669×(1+2+3)=4014.
故答案為:4014.
點評:本題主要考查了數(shù)列的遞推式和數(shù)列的求和問題,是中檔題,本題的關鍵是找出數(shù)列的周期性.