在二項式(2x+3)n的展開式中,若常數(shù)項為81,則含x3的項的系數(shù)為( 。
A、216B、96C、81D、16
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項
解答: 解:二項式(2x+3)n的展開式的通項公式為 Tr+1=
C
r
n
•(2x)n-r•3r
令n-r=0,求得r=n,∴常數(shù)項為3n=81,可得 n=4.
再令4-r=3,可得r=1,∴含x3的項的系數(shù)
C
1
4
×23×3=96,
故選:B.
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若(x-
11
11
n的展開式中第三項系數(shù)等于6,則n等于( 。
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果奇函數(shù)f(x)在[a,b]具有最大值1,那么該函數(shù)在[-b,-a]有(  )
A、最小值1B、最小值-1
C、最大值1D、最大值-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等比數(shù)列{an}滿足a6a8-4a7=0,則a1•a2•a3•…•a13等于( 。
A、213
B、214
C、226
D、228

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線y=(ax-1)•ex在點A(x0,y1)處的切線為l1,曲線y=(1-x)•e-x在點A(x0,y2)處的切線為l2,若存在x0∈[0,
3
2
],使得l1⊥l2,則實數(shù)a的取值范圍是( 。
A、(-∞,1]
B、[
3
2
,+∞)
C、(1,
3
2
D、[1,
3
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={y|0≤y<2},B={x||x|>1},則A∩(∁RB)=( 。
A、{x|0≤x≤1}
B、{x|1≤x<2}
C、{x|-1<x≤0}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a是實數(shù),i是虛數(shù)單位,若
a+i
1-i
為純虛數(shù),則a的值是(  )
A、1
B、-1
C、
2
D、-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin
1
2
x+
3
cos
1
2
x,x∈R.
(1)求函數(shù)的最大值及取最大值時x的取值集合;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=lnx,x∈R,求g(x)的反函數(shù)在x=0處的切線方程.

查看答案和解析>>

同步練習冊答案