設(shè)點(diǎn)P(x,y)是下圖中的四邊形內(nèi)的點(diǎn)或四邊形邊界上的點(diǎn),則z=2x+y的最大值是

[  ]
A.

-2

B.

-1

C.

1

D.

2

答案:D
解析:

由線(xiàn)性規(guī)劃知x=1,y=0時(shí),z取最大值2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線(xiàn)l的方程為x-y+4=0,曲線(xiàn)C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.
(3)(本小題滿(mǎn)分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建 題型:解答題

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線(xiàn)l的方程為x-y+4=0,曲線(xiàn)C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
(II)設(shè)點(diǎn)Q是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.
(3)(本小題滿(mǎn)分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)點(diǎn)A,B的坐標(biāo)分別為(-a,0),(a,0).直線(xiàn)AM,BM相交于點(diǎn)M,且他們的斜率之積為k.則下列說(shuō)法正確的是   
(1)當(dāng)k=時(shí),點(diǎn)M的軌跡是雙曲線(xiàn).(其中a,b∈R+
(2)當(dāng)k=-時(shí),點(diǎn)M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點(diǎn)p(x,y)(x<0)是曲線(xiàn)上的點(diǎn)F1(-,F(xiàn)2,0),且|PF1|=|PF2|,則(1)的軌跡所在的圓錐曲線(xiàn)的離心率取值范圍(1,]
(4)在(2)的條件下,過(guò)點(diǎn)F1(-,0),F(xiàn)2,0).滿(mǎn)足=0的點(diǎn)M總在曲線(xiàn)的內(nèi)部,則(2)的軌跡所在的圓錐曲線(xiàn)的離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)點(diǎn)A,B的坐標(biāo)分別為(-a,0),(a,0).直線(xiàn)AM,BM相交于點(diǎn)M,且他們的斜率之積為k.則下列說(shuō)法正確的是   
(1)當(dāng)k=時(shí),點(diǎn)M的軌跡是雙曲線(xiàn).(其中a,b∈R+
(2)當(dāng)k=-時(shí),點(diǎn)M的軌跡是部分橢圓.(其中a,b∈R+
(3)在(1)條件下,點(diǎn)p(x,y)(x<0)是曲線(xiàn)上的點(diǎn)F1(-,F(xiàn)2,0),且|PF1|=|PF2|,則(1)的軌跡所在的圓錐曲線(xiàn)的離心率取值范圍(1,]
(4)在(2)的條件下,過(guò)點(diǎn)F1(-,0),F(xiàn)2,0).滿(mǎn)足=0的點(diǎn)M總在曲線(xiàn)的內(nèi)部,則(2)的軌跡所在的圓錐曲線(xiàn)的離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 (其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C’:,求a,b的值.
(2)(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線(xiàn)l的方程為x-y+4=0,曲線(xiàn)C的參數(shù)方程為
(I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
(II)設(shè)點(diǎn)Q是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.
(3)(本小題滿(mǎn)分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案