如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,D、E分別為AB、CD的中點,AE的延長線交CB于F.現(xiàn)將△ACD沿CD折起,折成二面角A-CD-B,連接AF.

(Ⅰ)求證:平面AEF⊥平面CBD;

(Ⅱ)當AC⊥BD時,求二面角A-CD-B大小的余弦值.

答案:二面角
解析:

  證明:(Ⅰ)在

  又E是CD的中點,得AF⊥CD.3分

  折起后,AE⊥CD,EF⊥CD,又AE∩EF=E,AE平面AED,EF平面AEF,故CD⊥平面AEF,又CD平面CDB,故平面AEF⊥平面CBD.5分

  (Ⅱ)過點A作AH⊥EF,垂足H落在FE的延長線上.

  因為CD⊥平面AEF,所以CD⊥AH,所以AH⊥平面CBD.6分

  以E為原點,EF所在直線為x軸,ED所在直線為y軸,過E與AH平行的直線為z軸建立如圖空間直角坐標系.7分

  由(Ⅰ)可知∠AEF即為所求二面角的平面角,設為,并設AC=,可得

  8分

  

  得;11分

  故二面角A-CD-B大小的余弦值為(12分)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
3
,則AC的長為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
(1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
(1)建立適當?shù)淖鴺讼,求曲線E的方程;
(2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設
DM
DN
=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習冊答案