3.已知函數(shù)f(x)=a2lnx-x2+ax(a≠0),g(x)=(m-1)x2+2mx-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=1時(shí),關(guān)于x的不等式f(x)≤g(x)恒成立,求整數(shù)m的最小值.

分析 (1)首先求函數(shù)的導(dǎo)函數(shù),然后分a>0,a=0,a<0三種情況進(jìn)行分類求函數(shù)的單調(diào)區(qū)間;
(2)首先構(gòu)造函數(shù)h(x)=f(x)-g(x),然后求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的解析式分m≤0與m>0兩種情況求出函數(shù)h(x)的最小值,并建立關(guān)于m的不等式進(jìn)行求解.

解答 解:(1)f′(x)=$\frac{{a}^{2}}{x}$-2x+a=-$\frac{2{x}^{2}-ax-{a}^{2}}{x}$-$\frac{(2x+a)(x-a)}{x}$,x>0,
當(dāng)a>0時(shí),由f′(x)>0,得0<x<a,由f′(x)<0,得x>a,
∴f(x)的單調(diào)增區(qū)間為(0,a),單調(diào)減區(qū)間為(a,+∞)
當(dāng)a<0時(shí),由f′(x)>0,得0<x<-$\frac{a}{2}$,由f′(x)<0,得x>-$\frac{a}{2}$,
∴f(x)的單調(diào)增區(qū)間為(0,-$\frac{a}{2}$),單調(diào)減區(qū)間為(-$\frac{a}{2}$,+∞);
(2)令h(x)=f(x)-g(x)=lnx-mx2+(1-2m)x+1,x>0,
則h′(x)=$\frac{1}{x}$-2mx+1-2m=$\frac{-2m{x}^{2}+(1-2m)x+1}{x}$=-$\frac{(2mx-1)(x+1)}{x}$
當(dāng)m≤0時(shí),h′(x)>0,
∴h(x)在(0,+∞)上單調(diào)遞增,
∵h(yuǎn)(1)=ln1-m×12+(1-2m)+1=-3m
+2>0,
∴關(guān)于x的不等式f(x)≤g(x)恒成立,
當(dāng)m>0時(shí),由h′(x)>0,得0<x<$\frac{1}{2m}$,由f′(x)<0,得x>$\frac{1}{2m}$,
∴h(x)的單調(diào)增區(qū)間為(0,$\frac{1}{2m}$),單調(diào)減區(qū)間為($\frac{1}{2m}$,+∞);
∴h(x)max=h($\frac{1}{2m}$)=ln$\frac{1}{2m}$-m•($\frac{1}{2m}$)2+(1-2m)×$\frac{1}{2m}$+1=$\frac{1}{4m}$-ln(2m),
令φ(m)=$\frac{1}{4m}$-ln(2m),
∵φ($\frac{1}{2}$)=$\frac{1}{2}$,φ(1)=$\frac{1}{4}$-ln2<0,
又φ(x)在(0,+∞)是減函數(shù),
∴當(dāng)m≥1時(shí),φ(m)<0,
故整數(shù)m的最小值為1.

點(diǎn)評(píng) 本題主要考查了函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,不等式恒成立問題,考查了推理論證能力,運(yùn)算求解能力,分類討論的思想和等價(jià)轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-3y+6≥0}\\{x-y≤0}\end{array}\right.$,當(dāng)a>0,b>0時(shí),z=ax+by的最大值為3,則$\frac{1}{a}$+$\frac{2}$的最小值為(  )
A.5B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.2+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后所得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,則圓錐的母線長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{{{a^{2x}}}}{{a+{a^{2x}}}}$(a>0,a≠1),則f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2015}{2016}$)=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD是矩形,且PA⊥CD,PA=AD,M、N分別為AB、PC的中點(diǎn).求證:
(Ⅰ)MN∥平面PAD;
(Ⅱ)MN⊥CD;
(Ⅲ)MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.n∈N*,${C}_{n}^{0}$+3${C}_{n}^{1}$+…+(2n+1)$C_n^n$=(n+1)2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線的方程為y2=2px(p>0),O為坐標(biāo)原點(diǎn),A、B為拋物線上的點(diǎn),若△OAB為等邊三角形,且面積為12$\sqrt{3}$,則p的值為( 。
A.2B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.閱讀程序框圖(如圖),完成以下問題:
(Ⅰ)寫出y與x的函數(shù)關(guān)系式y(tǒng)=f(x),并求f[f($\frac{1}{10}$)]的值;
(Ⅱ)在區(qū)間[0,100]上隨機(jī)取一個(gè)數(shù)x,求f(x)∈[1,3]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是公差不為0的等差數(shù)列,a2=3,且a5是a4,a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求使an<Sn成立的所有n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案