8.用數(shù)學歸納法證明1+2+22+…+2n+1=2n+2-1(n∈N*)的過程中,在驗證n=1時,左端計算所得的項為(  )
A.1B.1+2C.1+2+22D.1+2+22+23

分析 通過表達式的特點,直接寫出結(jié)果即可.

解答 解:用數(shù)學歸納法證明1+2+22+…+2n+1=2n+2-1(n∈N*)的過程中,
左側(cè)的特點是,由1一直加到2n+1項結(jié)束.
所以在驗證n=1時,左端計算所得的項為:1+2+22
故選:C.

點評 本題考查數(shù)學歸納法的應用,判斷表達式的特征的解題的關(guān)鍵,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.將函數(shù)y=cos(2x+φ)的圖象向右平移$\frac{π}{3}$個單位,得到的函數(shù)為奇函數(shù),則|φ|的最小值( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知點A(-2,0)、B(2,0),P是平面內(nèi)的一個動點,直線PA與PB的斜率之積是-$\frac{1}{2}$.
(Ⅰ)求曲線C的方程;
(Ⅱ)直線y=k(x-1)與曲線C交于不同的兩點M、N,當△AMN的面積為$\frac{12\sqrt{2}}{5}$時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為3.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為$\frac{2}{3}$,則拋物線C2的方程為( 。
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD,地面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點.
(I)證明:AE⊥PD;
(II)若AB=2,AP=2,在線段PC上是否存在點F使二面角E-AF-C的余弦值為$\frac{\sqrt{15}}{5}$?若存在,請確定點F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)中,橢圓長軸長是短軸長的$\sqrt{3}$倍,短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為$\frac{{5\sqrt{2}}}{3}$.
(1)求橢圓C的標準方程;
(2)已知動直線y=k(x+1)與橢圓C相交與A,B兩點,若線段AB的中點的橫坐標為-$\frac{1}{2}$,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知直線l1:2x-2y+1=0,直線l2:x+by-3=0,若l1⊥l2,則b=1;若l1∥l2,則兩直線間的距離為$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知命題p:x2+mx+1=0有兩個不等的實根,命題q:4x2+4(m-2)x+1=0無實根,若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法不正確的是(  )
A.命題“若a>b,則ac>bc”是真命題
B.命題“若a2+b2=0,則a,b全為0”是真命題
C.命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”
D.命題“若a=0,則ab=0”的逆否命題是“若ab≠0,則a≠0”

查看答案和解析>>

同步練習冊答案