【題目】《國家中長期教育改革和發(fā)展規(guī)劃2010-2020》指出,到2020年基本實現(xiàn)教育現(xiàn)代化,進入人力資源強國行列,并提出要實現(xiàn)更高水平的普及教育,基本普及學(xué)前教育、鞏固提高九年義務(wù)教育、提高高等教育大眾化水平,從國家層面確立了教育的重要地位.隨著國家對教育的日益重視,教育經(jīng)費投入也逐漸加大.下圖是我國2010年到2016年國家財政性教育經(jīng)費投入(單位:萬億元)的散點圖,年份代碼為.
注:年份代碼1-7分別對應(yīng)年份2010-2016.
(1)由散點圖可知國家財政性教育經(jīng)費投入與年份代碼具有相關(guān)關(guān)系,試建立國家財政性教育經(jīng)費投入與年份代碼的回歸方程;
(2)預(yù)測2020年我國國家財政性教育經(jīng)費投入的值是否能超過萬億.
附注:參考數(shù)據(jù):,,
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出當(dāng)時直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點,直線與曲線相交于不同的兩點,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),射線的極坐標(biāo)方程為.
(1)求圓和直線的極坐標(biāo)方程;
(2)已知射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當(dāng)a>1時,求使f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,和都是邊長為2的等邊三角形,設(shè)在底面的射影為.
(1)求證:是中點;
(2)證明:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,其左焦點到點的距離為,不過原點O的直線與C交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求k的值;
(3)求面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,和都是邊長為2的等邊三角形,設(shè)在底面的射影為.
(1)求證:是中點;
(2)證明:;
(3)求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知國家某級大型景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)時,擁擠等級為“優(yōu)”;當(dāng)時,擁擠等級為“良”;當(dāng)時,擁擠等級為“擁擠”;當(dāng)時,擁擠等級為“嚴重擁擠”.該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù):
(1)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
游客數(shù)量(單位:百人) | ||||
天數(shù) | 10 | 4 | 1 | |
頻率 |
(2)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的頻率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,,數(shù)列中,,滿足.
(1) 求出,的通項公式;
(2)設(shè),數(shù)列的前項和為,求使得時,對所有的恒成立的最大正整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com