精英家教網 > 高中數學 > 題目詳情
巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為
3
2
,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.
由題設知e=
3
2
,2a=12,
∴a=6,b=3,
∴所求橢圓方程為
x2
36
+
y2
9
=1

答案:
x2
36
+
y2
9
=1
練習冊系列答案
相關習題

科目:高中數學 來源:廣東 題型:填空題

巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為
3
2
,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省清遠一中高二(上)第二次月考數學試卷(文科)(解析版) 題型:填空題

巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為   

查看答案和解析>>

科目:高中數學 來源:《2.1 橢圓》2013年同步練習2(解析版) 題型:填空題

巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為   

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省泰州市興化中學高三(上)質量檢測數學試卷(解析版) 題型:填空題

巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為   

查看答案和解析>>

同步練習冊答案