(本題12分)已知圓C經(jīng)過點A(1,—1),B(—2,0),C(,1)直線:

(1)求圓C的方程;   

(2)求證:,直線與圓C總有兩個不同的交點;

(3)若直線與圓C交于M、N兩點,當時,求m的值。

 

【答案】

解:(1)…………………………………………4分

(2)……………………8分

(3)圓心(0,1),半徑為,圓心到直線的距離

  ……12分

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆黑龍江大慶實驗中學高二上學期開學考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分) 已知圓的圓心軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.

(I)求圓的方程;

(II)設,若圓的內(nèi)切圓,求△的面積

的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:海南省10-11學年高一下學期期末考試數(shù)學(1班) 題型:解答題

(本題滿分12分)已知圓x2+y2+x-6y+m=0和直線x+2y-3=0交于P、Q兩點.

(Ⅰ)求實數(shù)m的取值范圍;

(Ⅱ)求以PQ為直徑且過坐標原點的圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆河北省高二下學期一調(diào)考試理科數(shù)學 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個公共點A(3,1),分別是橢圓的左、右焦點;

(Ⅰ)求圓C的標準方程;

(Ⅱ)若點P的坐標為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢

圓E和直線的方程,若不能,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題12分)已知圓C經(jīng)過點A(1,—1),B(—2,0),C(,1)直線:

   (1)求圓C的方程;   

(2)求證:直線與圓C總有兩個不同的交點;

(3)若直線與圓C交于M、N兩點,當時,求m的值。

查看答案和解析>>

同步練習冊答案