【題目】已知點P(1,3),圓C:(x﹣m)2+y2= 過點A(1,﹣ ),F(xiàn)點為拋物線y2=2px(p>0)的焦點,直線PF與圓相切.
(1)求m的值與拋物線的方程;
(2)設(shè)點B(2,5),點 Q為拋物線上的一個動點,求 的取值范圍.

【答案】
(1)解:點A代入圓C方程,得(1﹣m)2+(﹣ 2= ,解之得m=1.

∴圓C方程為:(x﹣1)2+y2=

①當(dāng)直線PF的斜率不存在時,不合題意.

②當(dāng)直線PF的斜率存在時,設(shè)為k,則PF:y=k(x﹣1)+3,即kx﹣y﹣k+3=0.

∵直線PF與圓C相切,∴C到PF的距離為 = ,解之得k=1或﹣1.

當(dāng)k=1時,直線PF與x軸的交點橫坐標(biāo)為﹣2,不合題意舍去;

當(dāng)k=﹣1時,直線PF與x軸的交點橫坐標(biāo)為4,

=4,可得拋物線方程為y2=16x


(2)解:∵P(1,3),B(2,5),∴ ,

設(shè)Q(x,y),得

=﹣(x﹣2)+(﹣2)(y﹣5)=﹣x﹣2y+12.

=﹣ y2﹣2y+12=﹣ (y+16)2+28

∵y∈R,得y=﹣16時 的最大值等于28

因此, 的取值范圍為(﹣∞,28].


【解析】(1)點A坐標(biāo)代入圓C方程解出m=1,再設(shè)出直線PF方程,根據(jù)PF與圓C相切利用點到直線的距離公式解出k=±1,討論可得k=1不符合題意,而k=﹣1時算出 =4,得拋物線方程為y2=16x;(2)設(shè)Q(x,y),由向量的坐標(biāo)運算公式,算出 關(guān)于x、y的表達(dá)式,結(jié)合拋物線方程化簡得 =﹣ y2﹣2y+12=﹣ (y+16)2+28,利用二次函數(shù)的圖象與性質(zhì)即可得到 的取值范圍為(﹣∞,28].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x+1)的定義域為(
A.[﹣1,2]
B.[﹣1,2)
C.(﹣1,2]
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為全體實數(shù)R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=3sin(2x﹣ )的圖象向左平移 個單位后,所在圖象對應(yīng)的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時針轉(zhuǎn)動5圈,如果當(dāng)水輪上點P從水中浮現(xiàn)時(圖象P0點)開始計算時間,且點P距離水面的高度f(t)(米)與時間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函數(shù)f(t)的解析式;
(2)點P第二次到達(dá)最高點要多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,點P是平面A1B1C1D1內(nèi)的一個動點,則三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為(
A.1
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩個籃球隊在3次不同比賽中的得分情況.乙隊記錄中有一個數(shù)字模糊,無法確認(rèn),假設(shè)這個數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊平均得分超過甲隊平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,曲線y=f(x)在點(2,f(2))處的切線方程為7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊答案