設(shè)α,β為銳角,那么“sin2α+sin2β=sin(α+β)”是“α+β=
π
2
”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:先利用反證法證明“sin2α+sin2β=sin(α+β)”⇒“α+β=
π
2
”成立,再證明“sin2α+sin2β=sin(α+β)”?“α+β=
π
2
”成立,進(jìn)而根據(jù)充要條件的定義,得到答案.
解答: 解:若α+β>
π
2
,即α>
π
2
-β,
則sinα>sin(
π
2
-β)=cosβ,
則sin2α>cos2β,
則sin2α+sin2β>cos2β+sin2β=1≠sin(α+β),
若α+β<
π
2
,即α<
π
2
-β,
則cosα>cos(
π
2
-β)=sinβ,同理cosβ>sinα,
則sin(α+β)=sinαcosβ+cosαsinβ>sin2α+sin2β,
綜上,“sin2α+sin2β=sin(α+β)”時(shí)必有“α+β=
π
2
”,
即“sin2α+sin2β=sin(α+β)”是“α+β=
π
2
”充分條件;
當(dāng)“α+β=
π
2
”時(shí),“sin2α+sin2β=sin(α+β)”顯然成立,
故“sin2α+sin2β=sin(α+β)”是“α+β=
π
2
”必要條件;
故α,β為銳角時(shí),那么“sin2α+sin2β=sin(α+β)”是“α+β=
π
2
”的充要條件;
故選:C
點(diǎn)評(píng):判斷充要條件的方法是:①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足(1+i)z=2-i(i為虛數(shù)單位),則|z+i|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)z1=2+i,z2=1-i,那么
z1
z2
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第( 。┫笙蓿
A、一B、二C、三D、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
3-ai
i
(i為虛數(shù)單位且a<0)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:根據(jù)上表可得回歸方程
y
=
b
x+a中的b=10.6,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為10萬(wàn)元時(shí)銷售額為( 。
廣告費(fèi)用x(萬(wàn)元) 4 2 3 5
銷售額y(萬(wàn)元) 49 26 39 58
A、112.1萬(wàn)元
B、113.1萬(wàn)元
C、111.9萬(wàn)元
D、113.9萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足:z+|z|=1+2i,則z的虛部為( 。
A、2iB、1C、2D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了解高三年級(jí)不同性別的學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有630名學(xué)生,男女生人數(shù)之比為11:10,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為
1
6

(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);
(2)通過(guò)對(duì)被抽取的學(xué)生的問(wèn)卷調(diào)查,得到如下2×2列聯(lián)表:
否定 肯定 總計(jì)
男生 10
女生 30
總計(jì)
①完成列聯(lián)表;
②能否有97.5%的把握認(rèn)為態(tài)度與性別有關(guān)?
(3)若一班有5名男生被抽到,其中4人持否定態(tài)度,1人持肯定態(tài)度;二班有4名女生被抽到,其中2人持否定態(tài)度,2人持肯定態(tài)度.現(xiàn)從這9人中隨機(jī)抽取一男一女進(jìn)一步詢問(wèn)所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度,一人持否定態(tài)度的概率.解答時(shí)可參考下面公式及臨界值表:k0=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
AD 0.10 0.05 0.025 0.010 0.005
O 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(4,a)(a>0)在拋物線C:y2=2px(p>0)上,P點(diǎn)到拋物線C的焦點(diǎn)F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知圓E:x2+y2=2x,過(guò)圓心E作直線l與圓E和拋物線C自上而下依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直線l的方程;
(Ⅲ)過(guò)點(diǎn)Q(4,2)的任一直線(不過(guò)P點(diǎn))與拋物線C交于A、B兩點(diǎn),直線AB與直線y=x+4交于點(diǎn)M,記直線PA、PB、PM的斜率分別為k1、k2、k3,問(wèn)是否存在實(shí)數(shù)λ,使得k1+k2=λk3,若存在,求出λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)過(guò)點(diǎn)(-
1
2
,-
3
),離心率為
3
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P(0,t)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn),把△AOB(O為坐標(biāo)原點(diǎn))的面積表示為t的函數(shù)f(t),并求函數(shù)f(t)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案