15.對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan對(duì)任意正整數(shù)n(n>k)總成立,則稱(chēng)數(shù)列{an}是“P(k)數(shù)列”.
(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
(2)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

分析 (1)由題意可知根據(jù)等差數(shù)列的性質(zhì),an-3+an-2+an-1+an+1+an+2+an+3=(an-3+an+3)+(an-2+an+2)+(an-1+an+1)═2×3an,根據(jù)“P(k)數(shù)列”的定義,可得數(shù)列{an}是“P(3)數(shù)列”;
(2)由已知條件結(jié)合(1)中的結(jié)論,可得到{an}從第3項(xiàng)起為等差數(shù)列,再通過(guò)判斷a2與a3的關(guān)系和a1與a2的關(guān)系,可知{an}為等差數(shù)列.

解答 解:(1)證明:設(shè)等差數(shù)列{an}首項(xiàng)為a1,公差為d,則an=a1+(n-1)d,
則an-3+an-2+an-1+an+1+an+2+an+3,
=(an-3+an+3)+(an-2+an+2)+(an-1+an+1),
=2an+2an+2an,
=2×3an,
∴等差數(shù)列{an}是“P(3)數(shù)列”;
(2)證明:當(dāng)n≥4時(shí),因?yàn)閿?shù)列{an}是P(3)數(shù)列,則an-3+an-2+an-1+an+1+an+2+an+3=6an,①,
因?yàn)閿?shù)列{an}是“P(2)數(shù)列”,所以an-3+an-3+an+an+1=4an-1,②,
an-1+an+an+2+an+3=4an+1,③,
②+③-①,得2an=4an-1+4an+1-6an,即2an=an-1+an+1,(n≥4),
因此n≥4從第3項(xiàng)起為等差數(shù)列,設(shè)公差為d,注意到a2+a3+a5+a6=4a4,
所以a2=4a4-a3-a5-a6=4(a3+d)-a3-(a3+2d)-(a3+3d)=a3-d,
因?yàn)閍1+a2+a4+a5=4a3,所以a1=4a3-a2-a4-a5=4(a2+d)-a2-(a2+2d)-(a2+3d)=a2-d,
也即前3項(xiàng)滿足等差數(shù)列的通項(xiàng)公式,
所以{an}為等差數(shù)列.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),考查數(shù)列的新定義的性質(zhì),考查數(shù)列的運(yùn)算,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知半徑為120mm的圓上,有一條弧的長(zhǎng)是144mm,則該弧所對(duì)的圓心角的弧度數(shù)為1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)等比數(shù)列{an}滿足a1+a2=-1,a1-a3=-3,則a4=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件.為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取18件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈D}\\{x,x∉D}\end{array}\right.$,其中集合D={x|x=$\frac{n-1}{n}$,n∈N*},則方程f(x)-lgx=0的解的個(gè)數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,正方形ABCD內(nèi)的圖形來(lái)自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對(duì)稱(chēng).在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是( 。
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{1}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M、N兩點(diǎn).若∠MAN=60°,則C的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=1+x+$\frac{sinx}{{x}^{2}}$的部分圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知橢圓x2+my2=1的焦距為$\sqrt{3}$,則m=4或$\frac{4}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案