已知函數(shù)f(x)=x2-x+a+1
(1)若f(x)≥0對一切實數(shù)x恒成立,求實數(shù)a的取值范圍.
(2)求f(x)在區(qū)間(-∞,a]上的最小值g(a)的表達式.
分析:(1)根據(jù)題意,函數(shù)圖象對應(yīng)的拋物線開口向上且與x軸不相交,由此結(jié)合根的判別式建立關(guān)于a的不等式,解之即可得到實數(shù)a的取值范圍;
(2)因為函數(shù)的圖象對應(yīng)的拋物線開口向上,關(guān)于直線x=
1
2
對稱,所以分a
1
2
和a
1
2
時兩種情況加以討論,結(jié)合二次函數(shù)的單調(diào)性進行求解,即可得到f(x)在區(qū)間(-∞,a]上的最小值g(a)的表達式.
解答:解:(1)∵二次函數(shù)f(x)=x2-x+a+1,且f(x)≥0對一切實數(shù)x恒成立,
∴△=(-1)2-4(a+1)≤0,即-4a-3≤0,解之得a≥-
3
4

因此,實數(shù)a的取值范圍是[-
3
4
,+∞).
(2)配方,得f(x)=x2-x+a+1=(x-
1
2
2+a+
3
4

①當(dāng)a
1
2
時,函數(shù)在(-∞,a]上為減函數(shù),所以最小值為f(a)=a2+1=g(a);
②當(dāng)a
1
2
時,函數(shù)在(-∞,
1
2
]上為減函數(shù),在(
1
2
,a]上是增函數(shù)
此時,f(x)的最小值為f(
1
2
)=a+
3
4

因此f(x)在區(qū)間(-∞,a]上的最小值g(a)的表達式為:
g(a)=.
a2+1       (a≤
1
2
)
a+
3
4
         (a>
1
2
)
點評:本題給出含有字母參數(shù)a的二次函數(shù),討論函數(shù)恒成立并求函數(shù)在區(qū)間(-∞,a]上的最小值.著重考查了二次的圖象與性質(zhì)、分類討論的思想和分段函數(shù)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案