(本題滿分12分)
已知函數(shù)的定義域是,且滿足,,如果對于0<x<y,都有,
(1)求;
(2)解不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某醫(yī)藥研究所開發(fā)一種新藥,在實(shí)驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量(微克)與時(shí)間(小時(shí))之間滿足,
其對應(yīng)曲線(如圖所示)過點(diǎn).
(1)試求藥量峰值(的最大值)與達(dá)峰時(shí)間(取最大值時(shí)對應(yīng)的值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時(shí)間?(精確到0.01小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/6/nl2rg2.png" style="vertical-align:middle;" />,對任意的實(shí)數(shù)都有;當(dāng)時(shí),,且.(1)判斷并證明在上的單調(diào)性;
(2)若數(shù)列滿足:,且,證明:對任意的,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)設(shè)函數(shù)滿足:都有,且時(shí),取極小值
(1)的解析式;
(2)當(dāng)時(shí),證明:函數(shù)圖象上任意兩點(diǎn)處的切線不可能互相垂直;
(3)設(shè), 當(dāng)時(shí),求函數(shù)的最小值,并指出當(dāng)取最小值時(shí)相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù).設(shè).
(1)求的值;
(2)R如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若,且,求證:N
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)計(jì)一副宣傳畫,要求畫面積為4840,畫面的寬與高的比為,畫面的上,下各留8空白,左右各留5空白,怎樣確定畫面的高于寬尺寸,能使宣傳畫所用紙張面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)某企業(yè)擬投資、兩個(gè)項(xiàng)目,預(yù)計(jì)投資項(xiàng)目萬元可獲得利潤
萬元;投資項(xiàng)目萬元可獲得利潤萬元.若該企業(yè)用40
萬元來投資這兩個(gè)項(xiàng)目,則分別投資多少萬元能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
(本小題滿分12分)某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動場地(其中兩個(gè)小場地形狀相同),塑膠運(yùn)動場地占地面積為平方米.
(1)分別寫出用表示和用表示的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題共兩個(gè)小題,每題5分,滿分10分)
① 已知不等式的解集是,求的值;
② 若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/6/jirb64.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com