A. | $\frac{1}{4}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$ | B. | $\frac{1}{2}$$\overrightarrow a$+$\frac{1}{4}$$\overrightarrow b$ | C. | $\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$ | D. | $\frac{1}{2}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$ |
分析 根據兩個三角形相似對應邊成比例,得到DF與DC的比,再利用平面向量的線性運算與表示,即可求出要求的向量.
解答 解:如圖所示
?ABCD中,△DEF∽△BEA,
∴$\frac{DE}{EB}$=$\frac{DF}{AB}$=$\frac{1}{3}$,
再由AB=CD可得$\frac{DF}{DC}$=$\frac{1}{3}$,
∴$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DC}$;
又$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,
∴$\overrightarrow{DC}$=$\overrightarrow{OC}$-$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$,
∴$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{a}$-$\frac{1}{6}$$\overrightarrow$;
又$\overrightarrow{AD}$=$\overrightarrow{OD}$-$\overrightarrow{OA}$=$\frac{1}{2}$$\overrightarrow{BD}$-$\frac{1}{2}$$\overrightarrow{CA}$=$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{a}$,
∴$\overrightarrow{AF}$=$\overrightarrow{AD}$+$\overrightarrow{DF}$=($\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{a}$)+($\frac{1}{6}$$\overrightarrow{a}$-$\frac{1}{6}$$\overrightarrow$)=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$.
故選:C.
點評 本題主要考查了兩個向量的加減法法則以及其幾何意義,向量是數形結合的典型例子,向量的加減運算是用向量解決問題的基礎,是基礎題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3$\sqrt{5}$ | B. | $\sqrt{6}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ③④ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com