精英家教網 > 高中數學 > 題目詳情

函數f(x)在定義域R內可導,若f(x)=f(2-x),且(x-1)f'(x)>0,若數學公式,則a,b,c的大小關系是


  1. A.
    a>b>c
  2. B.
    c>a>b
  3. C.
    b>a>c
  4. D.
    c>b>a
B
分析:先根據題中條件:“f(x)=f(2-x),”求其對稱軸,再利用導數的符號判斷函數的單調性,進而可解.
解答:由f(x)=f(2-x)可知,f(x)的圖象關于x=1對稱,
根據題意又知x∈(-∞,1)時,f'(x)<0,此時f(x)為減函數,
x∈(1,+∞)時,f'(x)>0,f(x)為增函數,
所以f(3)=f(-1)<f(0)<f( ),即c<a<b,
故選B.
點評:本題主要考查函數的單調性與其導函數的正負之間的關系.解答關鍵是利用導數工具判斷函數的單調性,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
x2+1
,令g(x)=f(
1
x
)

(1)求函數f(x)的值域;
(2)任取定義域內的5個自變量,根據要求計算并填表;觀察表中數據間的關系,猜想一個等式并給予證明;
x
f(x)-
1
2
g(x)-
1
2
(3)如圖,已知f(x)在區(qū)間[0,+∞)的圖象,請據此在該坐標系中補全函數f(x)在定義域內的圖象,并在同一坐標系中作出函數g(x)的圖象.請說明你的作圖依據.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log2(2x-1)
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判斷函數f(x)在定義域上的單調性并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax-1-lnx(a∈R).
(1)討論函數f(x)在定義域內的極值點的個數;
(2)若函數f(x)在x=1處取得極值,對?x∈(0,+∞),f(x)≥bx-2恒成立,求實數b的取值范圍;
(3)當x>y>e-1時,求證:ex-y
ln(x+1)ln(y+1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在定義域(0.+∞)上是單調函數,若對于任意x∈(0,+∞),都有f(f(x)-
1
x
)=2,則f(
1
5
)的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ln
1-x1+x

(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性并加以證明;
(3)判斷函數f(x)在定義域上的單調性并加以證明.

查看答案和解析>>

同步練習冊答案