已知U={x|-1≤x≤3},A={x|-1≤x<3},B={x|x2-2x-3=0},C={x|-1<x<3},則有( 。
A、A?CB、C∪B=C
C、B∩U=CD、C∪A=B
考點:交集及其運算,并集及其運算
專題:集合
分析:求出B中方程的解確定出B,利用集合間的包含關(guān)系,并集以及交集的定義判斷即可.
解答: 解:由B中方程變形得:(x-3)(x+1)=0,
解得:x=3或x=-1,即B={-1,3},
∵U={x|-1≤x≤3},A={x|-1≤x<3},B={-1,3},C={x|-1<x<3},
∴C⊆A,C∪B={x|-1≤x≤3}≠C,B∩U=B,C∪A=A,
故選:A.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos x,則f′(
6
)等于( 。
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(3,M)到直線x+
3
y-4=0的距離等于1,則m等于?( 。
A、
3
B、-
3
C、-
3
3
D、
3
或-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=(1+2i)2+i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=
2x+1
x-1
},B={x|x2+x-6<0},求(1)A∩B;(2)(CRA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集為實數(shù)集R,集合A={x|log
1
2
(2x-1)>0},則CR
A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4y-11=0,在區(qū)間[-4,6]上任取實數(shù)m,則直線l:x+y+m=0與圓C相交所得△ABC為鈍角三角形(其中A、B為交點,C為圓心)的概率為( 。
A、
2
5
B、
4
5
C、
8
11
D、
9
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,|
AB
|=3.2,|
AC
|=4.8,
AB
AC
的夾角為50°,求|
AB
-
AC
|及
AB
-
AC
AB
的夾角(長度精確到0.1,角度精確到1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-a|-ax+1(a∈R)(1)當(dāng)a<0時,f(x)在[-2,-1]上是單調(diào)函數(shù)
(1)求實數(shù)a的取值范圍;
(2)求f(x)在[0,1]上的最大值M(a)

查看答案和解析>>

同步練習(xí)冊答案