3.如圖,空間四邊形ABCD中,E,F(xiàn)分別是AB和CB上的點,G,H分別是CD和AD上的點,且EH與FG相交于點K.求證:EH,BD,F(xiàn)G三條直線相交于同一點.

分析 證明點在直線上,在利用直線屬于平面的關(guān)系,證明點在平面上.再利用平面之間的交線,證明點在交線上,即可得到三條直線相交于同一點.

解答 證明:∵直線EH∩直線FG=K,
∵K∈EH,EH?平面ABD
∴K∈平面ABD;
同理:K∈平面BCD;
∵平面ABD∩平面BCD=BD;
∴K∈直線BD;
即:EH、FG、BD三條直線相交于一點.

點評 本題考查了點線面的關(guān)系和證明,點,直線,平面的基本性質(zhì)和推論.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},則(∁UA)∪(∁UB)=( 。
A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某班共50人,其中21人喜愛籃球運動,18人喜愛乒乓球運動,20人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.曲線y=xln x在點(e,e)處的切線與直線x+ay=1垂直,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A=(x,y)|${\frac{y-3}{x-1}$=3,x,y∈R},B={(x,y)|4x+ay=16,x,y∈R},若A∩B=∅,則實數(shù)a的值為(  )
A.$-\frac{4}{3}$B.4C.-$\frac{4}{3}$或 4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)在其定義域內(nèi)為奇函數(shù)的是( 。
A.y=x+$\frac{1}{x}$B.y=xsin xC.y=|x|-1D.y=cos x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\frac{1}{x-2}$+$\frac{1}{\sqrt{x+1}}$的定義域是(-1,2)∪(2,+∞)(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)是定義在[-1,1]上的減函數(shù),且f(x-1)<f(1-3x),則x的取值范圍是($\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)經(jīng)過點(2,4),那么函數(shù)y=f(x2)一定經(jīng)過點$(\sqrt{2},4),(-\sqrt{2},4)$.

查看答案和解析>>

同步練習(xí)冊答案