選修4-4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為:
x=t
y=1+2t
(t為參數(shù)),在以O(shè)為極點(diǎn),以x軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
(Ⅰ)將直線l的參數(shù)方程
x=t①
y=1+2t②
,①代入②消去參數(shù),可得普通方程y-2x-1=0,
圓C的極坐標(biāo)方程ρ=2
2
sin(θ+
π
4
)
,即ρ2=2ρsinθ+2ρcosθ,∴直角坐標(biāo)方程為x2+y2-2x-2y=0,即(x-1)2+(y-1)2=2;
(Ⅱ)∵圓心到直線的距離為d=
|1-2-1|
5
=
2
5
5
2

∴直線l與圓C相交.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(選做題)選修4-1:幾何證明選講

如圖,AB是⊙O的直徑,D是的中點(diǎn),DE⊥AC交AC的延長線于點(diǎn)F.
⑴求證:DE是⊙O的切線;
⑵若 DE="3" ,⊙O的半徑為5,求BF的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線的極坐標(biāo)方程為,圓M的參數(shù)方程為。求:(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓M上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

1)在x軸上求一點(diǎn)P,使它與點(diǎn)A(4,1,2)的距離為;
(2)在xOy面內(nèi)的直線x+y=1上確定一點(diǎn)M,使它到B(6,5,1)的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

A(1,2,1),B(1,5,1),C(1,2,7)為頂點(diǎn)的三角形的形狀是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系xOy中,點(diǎn)P的直角坐標(biāo)為(1,-
3
)
、若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可以是( 。
A.(1,-
π
3
)
B.(2,
3
)
C.(2,-
π
3
)
D.(2,-
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(極坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,ρ(2,
π
3
)
的直角坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,定點(diǎn),點(diǎn)在直線上運(yùn)動,則點(diǎn)和點(diǎn)間的最短距離為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

極坐標(biāo)方程為的圓與參數(shù)方程的直線的位置關(guān)系是      .

查看答案和解析>>

同步練習(xí)冊答案