A. | 是奇函數(shù) | B. | 在區(qū)間$(\frac{π}{12},\frac{7π}{12})$上單調(diào)遞增 | ||
C. | $(-\frac{π}{12},0)$為其圖象的一個(gè)對稱中心 | D. | 最小正周期為π |
分析 判斷函數(shù)的周期,求出對稱中心,函數(shù)的單調(diào)性,判斷選項(xiàng)即可.
解答 解:函數(shù)y=tan(2x+$\frac{2π}{3}$),函數(shù)的周期為:$\frac{π}{2}$,
當(dāng)x=0時(shí),y=-$\sqrt{3}$,函數(shù)不是奇函數(shù);
因?yàn)閗π$-\frac{π}{2}$$<2x+\frac{2π}{3}$$<kπ+\frac{π}{2}$,k∈Z,解得x∈($\frac{kπ}{2}-\frac{7π}{12}$,$\frac{kπ}{2}-\frac{π}{12}$),k∈Z,
所以在區(qū)間$(\frac{π}{12},\frac{7π}{12})$上單調(diào)遞增,不正確;
x=-$\frac{π}{12}$時(shí),y=tan($\frac{π}{2}$)不存在,所以$(-\frac{π}{12},0)$為其圖象的一個(gè)對稱中心.正確.
故選:C.
點(diǎn)評 本題考查命題的真假的判斷,正切函數(shù)的單調(diào)性、奇偶性、對稱性、周期性的求法,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
人數(shù) x y | A | B | C |
A | 14 | 40 | 10 |
B | a | 36 | b |
C | 28 | 8 | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com