5.已知全集為U=R,集合B={x|($\frac{1}{2}$)x≤1},A={x|x≥2},則(∁UA)∩B=( 。
A.[0,2)B.[0,2]C.(1,2)D.(1,2]

分析 先求出CUA,由此利用交集定義能求出(∁UA)∩B的值.

解答 解:∵全集為U=R,集合B={x|($\frac{1}{2}$)x≤1}={x|x≥0},A={x|x≥2},
∴CUA={x|x<2},
(∁UA)∩B={x|0≤x<2}=[0,2).
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是集合的交集,并集,補(bǔ)集運(yùn)算,集合的包含關(guān)系判斷及應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線C的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若C的右支上存在兩點(diǎn)A、B,使∠AOB=120°,其中O為坐標(biāo)原點(diǎn),則曲線C的離心率的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=sin2x-2$\sqrt{3}$sin2x的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已和命題P:函數(shù)y=logax在定義域上單調(diào)遞減;$Q:\frac{a-2}{a+2}≤0$,若P∨Q是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知球的直徑SC=2,A,B是該球球面上的兩點(diǎn),AB=1,∠ASC=∠BSC=30°,則棱錐S-ABC的體積為( 。
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-2ax+4
(1)求函數(shù)y=f(x),x∈[0,2]的最小值
(2)若對任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,
(1)求由$\left\{\begin{array}{l}0≤x≤\frac{5π}{12}\\ 0≤y≤f(x)\end{array}$,確定的區(qū)域的面積;
(2)如何由函數(shù)y=sinx的圖象通過相應(yīng)的平移與伸縮變換得到函數(shù)f(x)的圖象,寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若log2x=-log2(2y),則x+2y的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.“a,b都是偶數(shù)”是“a+b是偶數(shù)”的充分不必要條件.(從“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

同步練習(xí)冊答案