在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,且PA⊥平面ABCD.
(1)求證:PC⊥BD;
(2)過(guò)直線BD且垂直于直線PC的平面交PC于點(diǎn)E,且三棱錐E-BCD的體積取到最大值.
①求此時(shí)四棱錐E-ABCD的高;
②求二面角A-DE-B的正弦值的大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,是的中點(diǎn).
(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點(diǎn).
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD為正方形,為等腰直角三角形,,且.
(1)證明:平面平面.
(2)求直線EC與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB=BB1=2,求A1D與平面AC1D所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在長(zhǎng)方體中,點(diǎn)為棱上任意一點(diǎn),,.
(Ⅰ)求證:平面平面;
(Ⅱ)若點(diǎn)為棱的中點(diǎn),點(diǎn)為棱的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是邊長(zhǎng)為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形中,,,平面,,,為的中點(diǎn).
(1)求證:平面.
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com