某項(xiàng)研究表明:在考慮行車安全的情況下,某路段車流量F(單位時(shí)間內(nèi)經(jīng)過測(cè)量點(diǎn)的車輛數(shù),單位:輛/小時(shí))與車流速度v(假設(shè)車輛以相同速度v行駛,單位:米/秒)、平均車長(zhǎng)l(單位:米)的值有關(guān),其公式為F=
76000v
v2+18v+20l

(Ⅰ)如果不限定車型,l=6.05,則最大車流量為
 
輛/小時(shí);
(Ⅱ)如果限定車型,l=5,則最大車流量比(Ⅰ)中的最大車流量增加
 
輛/小時(shí).
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)把l帶入,分子分母同時(shí)除以v,利用基本不等式求得F的最大值.
(Ⅱ)把l帶入,分子分母同時(shí)除以v,利用基本不等式求得F的最大值最后于(Ⅰ)中最大值作差即可.
解答: 解:(Ⅰ)F=
76000v
v2+18v+20l
=
76000
v+
121
v
+18

∵v+
121
v
≥2
121
=22,當(dāng)v=11時(shí)取最小值,
∴F=
76000
v+
121
v
+18
≤1900,
故最大車流量為:1900輛/小時(shí);
(Ⅱ)F=
76000v
v2+18v+20l
=
76000v
v2+18v+100
=
76000
v+
100
v
+18

∵v+
100
v
≥2
100
=20,
∴F≤2000,
2000-1900=100(輛/小時(shí))
故最大車流量比(Ⅰ)中的最大車流量增加100輛/小時(shí).
故答案為:1900,100
點(diǎn)評(píng):本題主要考查了基本不等式的性質(zhì).基本不等式應(yīng)用時(shí),注意“一正,二定,三相等”必須滿足.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc;
(2)求證:
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
e1
e2
的夾角為α,且cosα=
1
3
,若向量
a
=3
e1
-2
e2
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要制作一個(gè)容器為4m3,高為1m的無蓋長(zhǎng)方形容器,已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是
 
(單位:元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合{a,b,c,d}={1,2,3,4},且下列四個(gè)關(guān)系:
①a=1;②b≠1;③c=2;④d≠4有且只有一個(gè)是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角滿足sinA+
2
sinB=2sinC,則cosC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是一個(gè)各位數(shù)字都不是0且沒有重復(fù)數(shù)字三位數(shù),將組成a的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,輸出的結(jié)果b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)部為-2,虛部為1的復(fù)數(shù)所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,則該雙曲線的離心率為( 。
A、
4
3
B、
5
3
C、
9
4
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案