13.函數(shù)y=log${\;}_{\frac{1}{2}}$(|x-1|-|x+3|)的值域?yàn)閇-2,+∞).

分析 先求出函數(shù)的定義域,再根據(jù)函數(shù)的單調(diào)性求出其值域.

解答 解:設(shè)t=|x-1|-|x+3|,其圖象為,
由圖象可知-4≤t≤4,
由于t=|x-1|-|x+3|>0,
所以0<t≤4,
因?yàn)閥=log${\;}_{\frac{1}{2}}$t為減函數(shù),
所以y≥-2,
故函數(shù)的值域?yàn)閇-2,+∞),
故答案為:[-2,+∞),

點(diǎn)評(píng) 本題考了復(fù)合函數(shù)的單調(diào)性和函數(shù)的值域,關(guān)鍵是求出函數(shù)的定義域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(2,1),則與$\overrightarrow{a}$垂直且長(zhǎng)度為$\sqrt{5}$的向量$\overrightarrow b$的坐標(biāo)為(1,-2)或(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(1)設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是[$\frac{3}{2e}$,1).
(2)已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R,使得f(x2)≤g(x1)成立,則實(shí)數(shù)a的取值范圍$[-\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線3x-4y+5=0與圓x2+y2=r2(r>0)相交于A,B兩點(diǎn),且∠AOB=120°(O為坐標(biāo)原點(diǎn)),則r=( 。
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.規(guī)定 $C_x^m=\frac{x(x-1)…(x-m+1)}{m!}$,其中x∈R,m是正整數(shù),這是組合數(shù)$C_n^m$(m、n是正整數(shù),且m≤n)的一種推廣.設(shè)x>0,則$\frac{C_x^3}{{{{(C_x^1)}^2}}}$最小值$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,根據(jù)下列條件解三角形,其中有兩個(gè)解的是( 。
A.a=8,b=10,A=45°B.a=60,b=81,B=60°C.a=7,b=5,A=80°D.a=14,b=20,A=45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.
如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
其中m≤n,m,n∈N*.設(shè)1≤x≤m,1≤y≤n,則$\frac{x+y+2}{x+1}$的最小值為$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一機(jī)器可以按不同的速度運(yùn)轉(zhuǎn),其生產(chǎn)物件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)物件的多少是隨機(jī)器運(yùn)轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示平均每小時(shí)生產(chǎn)的有缺點(diǎn)物件的個(gè)數(shù),現(xiàn)觀測(cè)得到(x,y)的五組觀測(cè)值為:
(2,2.2)(3,3.8)(4,5.5)(5,6.5)(6,7)
若由資料知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程
(2)若實(shí)際生產(chǎn)中所允許的平均每小時(shí)有缺點(diǎn)的物件數(shù)不超過(guò)10,則機(jī)器的速度每秒不得超過(guò)多少轉(zhuǎn)?(結(jié)果取整數(shù))
有關(guān)公式:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\bar y})}}}{{\sum_{i=1}^n{{{({{x_i}-\bar x})}^2}}}}\bar=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}},a=\bar y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}滿足:a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)數(shù)列{bn}滿足bn=2${log_{\frac{1}{3}}}{a_n}$+1,求數(shù)列$\frac{1}{{{b_n}{b_{n+1}}}}$的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案