A. | (1,$\sqrt{2}$] | B. | (1,2] | C. | [$\sqrt{2}$,+∞) | D. | [2,+∞) |
分析 運用向量的中點表示,可得$\overrightarrow{PO}$=$\frac{1}{2}$($\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$),結(jié)合雙曲線的范圍,可得2c≥4a,再由離心率公式,即可得到所求范圍.
解答 解:由OP為△PF1F2的邊F1F2的中線,可得
$\overrightarrow{PO}$=$\frac{1}{2}$($\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$),
由在雙曲線上存在點P滿足2|$\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}}$|≤|$\overrightarrow{{F}_{1}{F}_{2}}$|,
可得4|$\overrightarrow{PO}$|≤2c,
由|$\overrightarrow{PO}$|≥a,可得2c≥4a,
即c≥2a,則e=$\frac{c}{a}$≥2.
故選:D.
點評 本題考查雙曲線的離心率的范圍,注意運用中點的向量表示,以及雙曲線的范圍,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{3}{2}$ | C. | -$\frac{4}{3}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X | -1 | 0 | 1 | 2 |
Pk | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(kπ-\frac{π}{6},kπ+\frac{π}{3}),k∈Z$ | B. | $(2kπ-\frac{π}{6},2kπ+\frac{π}{3}),k∈Z$ | ||
C. | $(2kπ+\frac{π}{3},2kπ+\frac{5π}{6}),k∈Z$ | D. | $(kπ+\frac{π}{3},kπ+\frac{5π}{6}),k∈Z$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com