在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在棱AB上.

(1)求證:AC⊥B1C;
(2)若D是AB中點(diǎn),求證:AC1∥平面B1CD.

(1)詳見解析;(2)詳見解析

解析試題分析:(1)要證明AC⊥B1C,根據(jù)線面垂直的判定定理,只要轉(zhuǎn)化證明AC⊥平面BB1C1C即可;
(2)要證明AC1∥平面B1CD,根據(jù)線面的判定定理,只要轉(zhuǎn)換證明DE//AC1即可.
試題解析:(1)證明:在△ABC中,因?yàn)锳B=5,AC=4,BC=3,
所以AC2+BC2=AB2,所以AC⊥BC.

因?yàn)橹比庵鵄BC-A1B1C1,所以CC1⊥AC,
因?yàn)锽C∩AC=C,所以AC⊥平面BB1C1C.
所以AC⊥B1C.   6分
(2)連結(jié)BC1,交B1C于E,連接DE.
因?yàn)橹比庵鵄BC-A1B1C1,D是AB中點(diǎn),所以側(cè)面BB1C1C為矩形,
DE為△ABC1的中位線,所以DE//AC1
因?yàn)镈E平面B1CD,AC1平面B1CD,所以AC1∥平面B1CD.   12分
考點(diǎn):空間位置關(guān)系的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分別為BB1、
A1C1的中點(diǎn).
(1)求證:CB1⊥平面ABC1
(2)求證:MN//平面ABC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正方體
(1)在正方體的所有棱中,哪些棱所在直線與直線異面
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知三棱錐P-ABC中,∠ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB中點(diǎn),且△PDB是正三角形,PA⊥PC。
.
(1)求證:DM∥平面PAC;
(2)求證:平面PAC⊥平面ABC;
(3)求三棱錐M-BCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐中,平面,底面是直角梯形,
.

(1)求證:平面;
(2)求證:平面;
(3)若的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中點(diǎn).

求證:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在三棱柱中,,,點(diǎn)分別是的中點(diǎn).
 
(1)求證:平面∥平面;
(2)求證:平面⊥平面;
(3)若,,求異面直線所成的角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一點(diǎn)F,使平面C1CF∥平面ADD1A1?若存在,求點(diǎn)F的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案