某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
API [0,50] (50,100] (100,150] (150,200] (200,250] (250,300] >300
空氣質(zhì)量 優(yōu) 輕微污染 輕度污染 中度污染 中度重污染 重度污染
天數(shù) 4 13 18 30 9 11 15
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元),空氣質(zhì)量指數(shù)API為ω.在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API為150時造成的 經(jīng)濟損失為500元,當(dāng)API為200時,造成的經(jīng)濟損失為700元);當(dāng)API大于300時造成的 經(jīng)濟損失為2000元;
(1)試寫出是S(ω)的表達(dá)式:
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
附:
P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
m(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染 重度污染 合計
供暖季
非供暖季
合計 100
考點:獨立性檢驗的應(yīng)用
專題:綜合題,概率與統(tǒng)計
分析:(1)根據(jù)在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API為150時造成的經(jīng)濟損失為500元,當(dāng)API為200時,造成的經(jīng)濟損失為700元);當(dāng)API大于300時造成的經(jīng)濟損失為2000元,可得函數(shù)關(guān)系式;
(2)由200<S≤600,得150<ω≤250,頻數(shù)為39,即可求出概率;
(3)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測值的公式,代入數(shù)據(jù)做出觀測值,同臨界值進行比較,即可得出結(jié)論.
解答: 解:(1)根據(jù)在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API為150時造成的經(jīng)濟損失為500元,當(dāng)API為200時,造成的經(jīng)濟損失為700元);當(dāng)API大于300時造成的經(jīng)濟損失為2000元,可得S(ω)=
0,x∈[0,100]
4ω-100,x∈(100,300]
200,x∈(300,+∞)

(2)設(shè)“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元”為事件A;
由200<S≤600,得150<ω≤250,頻數(shù)為39,
∴P(A)=
39
100
;
(2)根據(jù)以上數(shù)據(jù)得到如表:
非重度污染 重度污染 合計
供暖季 22 8 30
非供暖季 63 7 70
合計 85 15 100
K2的觀測值K2=
100×(63×8-22×7)2
85×15×30×70
≈4.575>3.841
所以有95%的把握認(rèn)為空氣重度污染與供暖有關(guān).
點評:本題考查概率知識,考查列聯(lián)表,觀測值的求法,是一個獨立性檢驗,我們可以利用臨界值的大小來決定是否拒絕原來的統(tǒng)計假設(shè),若值較大就拒絕假設(shè),即拒絕兩個事件無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足
z
2+4i
=-i,則z在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)是( 。
A、(2,-4)
B、(2,4)
C、(4,2)
D、(4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos
α
2
=
6
3
,則cos2α=(  )
A、
1
3
B、
7
9
C、-
7
9
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{1,2}的子集共有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+2x2-3x
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x≥1時,若關(guān)于x的不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,
e
≈1.6,e0.3≈1.3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4mx+4m2+m+1
m-1
2mx2+mx+3
的定義域是一切實數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+cos2x+3
(Ⅰ)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若a=
3
,f(A)=4,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且f(A)=2,b=1,且△ABC的面積為
3
,求邊a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-4|+|x-3|≤a有實數(shù)解的充要條件是
 

查看答案和解析>>

同步練習(xí)冊答案