4.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(-2,4),求$\overrightarrow{a}$在$\overrightarrow$方向上的投影為-$\frac{\sqrt{5}}{5}$.

分析 運(yùn)用向量數(shù)量積的坐標(biāo)表示和模的公式,可得$\overrightarrow{a}$•$\overrightarrow$,|$\overrightarrow{a}$|,|$\overrightarrow$|,再由$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$,計(jì)算即可得到所求值.

解答 解:向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(-2,4),
可得$\overrightarrow{a}$•$\overrightarrow$=3×(-2)+1×4=-2,
|$\overrightarrow{a}$|=$\sqrt{9+1}$=$\sqrt{10}$,|$\overrightarrow$|=$\sqrt{4+16}$=2$\sqrt{5}$,
可得$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{-2}{2\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$.
故答案為:-$\frac{\sqrt{5}}{5}$.

點(diǎn)評 本題考查向量數(shù)量積的坐標(biāo)表示和模的公式以及向量的投影的概念,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點(diǎn).
(1)求證:BE∥平面ACF
(2)求異面直線AD與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(件)908483807568
(1)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)
回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$x={5^{{{log}_2}3.4}}$,$y={5^{{{log}_4}3.6}}$,$z={(\frac{1}{5})^{{{log}_3}0.3}}$,則x,y,z大小關(guān)系為( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.由直線x=$\frac{1}{3}$,x=3,曲線y=$\frac{1}{x}$及x軸所圍圖形的面積是2ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax2+bx+5,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的單調(diào)區(qū)間
(3)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,已知圓M過坐標(biāo)原點(diǎn)O且圓心在曲線$y=\frac{{\sqrt{3}}}{x}$上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB面積為定值;
(2)直線$l:y=-\frac{{\sqrt{3}}}{3}x+4$與圓M交于不同的兩點(diǎn)C,D,|OC|=|OD|,求圓的方程.

查看答案和解析>>

同步練習(xí)冊答案