已知橢圓數(shù)學(xué)公式的離心率為數(shù)學(xué)公式,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(I)求橢圓C1的方程.
(Ⅱ)過(guò)點(diǎn)數(shù)學(xué)公式的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),試問(wèn):在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(I)由得x2+(2b-4)x+b2=0
直線y=x+b是拋物線C2:y2=4x的一條切線.
所以△=0?b=1
所以橢圓(5分)
(Ⅱ)當(dāng)直線l與x軸平行時(shí),以AB為直徑的圓方程為
當(dāng)直線l與y軸重合時(shí),以AB為直徑的圓方程為x2+y2=1
所以兩圓的切點(diǎn)為點(diǎn)(0,1)(8分)
所求的點(diǎn)T為點(diǎn)(0,1),證明如下.
當(dāng)直線l與x軸垂直時(shí),以AB為直徑的圓過(guò)點(diǎn)(0,1)
當(dāng)直線l與x軸不垂直時(shí),可設(shè)直線l為:
得(18k2+9)x2-12kx-16=0
設(shè)A(x1,y1),B(x2,y2)則
所以,即以AB為直徑的圓過(guò)點(diǎn)(0,1)
所以存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn)T(13分)
分析:(I)先跟據(jù)直線y=x+b是拋物線C2:y2=4x的一條切線,求出b的值,再由橢圓離心率為,求出a的值,則橢圓方程可得.
(Ⅱ)先假設(shè)存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn),再用垂直時(shí),向量的數(shù)量積為0,得到關(guān)于直線斜率k的方程,求k,若能求出,則存在,若求不出,則不存在.
點(diǎn)評(píng):本題考查了橢圓,拋物線與直線的綜合運(yùn)用,另外,還結(jié)合了向量知識(shí),綜合性強(qiáng),須認(rèn)真分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案