【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.
【答案】(1)答案見解析;(2)0;(3)2.
【解析】分析:(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)設(shè)切點為則:,從而可得結(jié)果;(3)恒成立等價于對恒成立,構(gòu)造函數(shù),通過導函數(shù)的符號判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后可得結(jié)果.
詳解:(1)函數(shù)的定義域為.
若時,則,所以在上單調(diào)遞增;
若時,則當時,,當時,,
所以在上遞減,在上遞增.
(2)設(shè)切點為則:,解得.
(3)當時,對任意,都有恒成立等價于對恒成立.
令,則,
由(1)知,當時,在上遞增.
因為,所以在上存在唯一零點,
所以在上也存在唯一零點,設(shè)此零點為,則.
因為當時,,當時,,
所以在上的最小值為,所以,
又因為,所以,所以.
又因為為整數(shù)且,所以的最大值是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2).
(1)求拋物線C的方程及準線l的方程;
(2)過焦點F的直線(不經(jīng)過Q點)與拋物線交于A,B兩點,與準線l交于點M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為ρ=4cos θ.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將曲線C上各點的橫坐標縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關(guān)系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).
(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;
(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進,到目前,中國擁有世界上最大的快遞市場.某快遞公司收取快遞費的標準是:重量不超過的包裹收費10元;重量超過的包裹,在收費10元的基礎(chǔ)上,每超過(不足,按計算)需再收5元.
該公司將最近承攬的100件包裹的重量統(tǒng)計如下:
公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;
(2)①估計該公司對每件包裹收取的快遞費的平均值;
②根據(jù)以往的經(jīng)驗,公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費用.目前前臺有工作人員3人,每人每天攬件不超過150件,日工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學期望,若你是決策者,是否裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,2),點M的極坐標為 ,若直線l過點P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標方程;
(2)設(shè)直線l與圓C相交于A,B兩點,求|PA||PB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com