已知函數(shù)f(x)=-x3x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.
(1) 單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為 和;(2) ;(3)

試題分析:(1)求導(dǎo),令導(dǎo)數(shù)大于0得增區(qū)間令導(dǎo)數(shù)小于0得減區(qū)間。(2) 對(duì)于任意都有成立,轉(zhuǎn)化為對(duì)于任意都有。求時(shí)可根據(jù)求導(dǎo)求單調(diào)性求最值,也可直接根據(jù)二次函數(shù)問題求其單調(diào)區(qū)間再求其最值。(3)先在曲線上任取一點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義求其過此點(diǎn)的切線的斜率,再用點(diǎn)斜式求切線方程。將代入直線方程。分析可知此方程應(yīng)有3個(gè)不同的解。將上式命名新函數(shù),用單調(diào)性求此函數(shù)的極值點(diǎn)可知一個(gè)極值應(yīng)大于0,另一個(gè)極值應(yīng)小于0.
試題解析:(1)當(dāng)時(shí),函數(shù),
.                            1分
所以當(dāng)時(shí),,函數(shù)f(x)單調(diào)遞增;                    2分
當(dāng)x<1或x>2時(shí),,函數(shù)f(x)單調(diào)遞減.                      3分
所以函數(shù)的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為 和 .4分
(2)由,得,            5分
因?yàn)閷?duì)于任意都有成立,
所以問題轉(zhuǎn)化為對(duì)于任意都有.          6分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240349311531231.png" style="vertical-align:middle;" />,其圖象開口向下,對(duì)稱軸為.
①當(dāng),即時(shí),上單調(diào)遞減,
所以,
,得,此時(shí).                 7分
②當(dāng),即時(shí),上單調(diào)遞增,在上單調(diào)遞減,
所以
,得,此時(shí).                 8分
綜上可得,實(shí)數(shù)的取值范圍為 .                   9分
(3)設(shè)點(diǎn)是函數(shù)圖象上的切點(diǎn),
則過點(diǎn)的切線的斜率,                    10分
所以過點(diǎn)P的切線方程為,     11分
因?yàn)辄c(diǎn)在該切線上,
所以,
.
若過點(diǎn)可作函數(shù)圖象的三條不同切線,
則方程有三個(gè)不同的實(shí)數(shù)解.                    12分
,則函數(shù)的圖象與坐標(biāo)軸橫軸有三個(gè)不同的交點(diǎn).
,解得.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034931699659.png" style="vertical-align:middle;" />,,                     13分
所以必須,即.
所以實(shí)數(shù)的取值范圍為 .                             14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)當(dāng)m=時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(2)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];
(3)是否存在實(shí)數(shù)m,使曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn);
(2)求該零點(diǎn)所在的一個(gè)區(qū)間,使這個(gè)區(qū)間的長度不超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)(1,1)處的切線方程為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)在點(diǎn)處的切線方程為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P為曲線Cf(x)=x2x+1上的點(diǎn),曲線C在點(diǎn)P處的切線斜率的取值范圍是[-1,3],則點(diǎn)P的縱坐標(biāo)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖象在處的切線斜率為
),且當(dāng)時(shí),其圖象經(jīng)過,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線處的切線方程為,則______,______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則 (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案