若x,y滿足條件求下列各式的最大值與最小值:

(1)z=2x+y;

(2)z=2x-3y.

答案:
解析:

  解:(1)作出不等式組表示的平面區(qū)域,即可行域,如圖所示.

  把z=2x+y變形為y=-2x+z,得到斜率為-2,在y軸上的截距為z,隨z變化的一組平行直線.

  由圖可以看出,當(dāng)直線z=2x+y經(jīng)過可行域上的點(diǎn)A時,截距z最大,經(jīng)過點(diǎn)B時,截距z最小.

  解方程組得A點(diǎn)坐標(biāo)為(5,2).解方程組得B點(diǎn)坐標(biāo)為(1,1).所以zmax=2×5+2=12,zmin=2×1+1=3.

  (2)把z=2x-3y變形為y=x-得到斜率為,在y軸上截距為-,且隨z變化的一組平行直線.由圖可知,當(dāng)直線經(jīng)過可行域上點(diǎn)A(5,2)時,截距-最小,從而z最大;當(dāng)直線經(jīng)過可行域上C點(diǎn)時,截距-最大,從而z最。

  解方程組得C點(diǎn)坐標(biāo)為(1,),所以

  zmax=2×5-3×2=4,zmin=2×1-3×=-


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M(1+cos2x,1),N(1,
3
sin2x+a)
(x∈R,a∈R,a是常數(shù)),且y=
OM
ON
(O為坐標(biāo)原點(diǎn)).
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)若x∈[0,
π
2
]
時,f(x)的最大值為4,求a的值;
(3)在滿足(2)的條件下,說明f(x)的圖象可由y=sinx的圖象如何變化而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線l滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N且滿足
OM
ON
?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t、硝酸鹽18t;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元.
(1)設(shè)生產(chǎn)甲種肥料x車皮,乙種肥料y車皮,寫出x,y滿足的線性約束條件,并畫出其相應(yīng)的平面區(qū)域;
(2)設(shè)該廠的利潤為z萬元(1)的條件下求目標(biāo)函數(shù)z=f(x,y)的表達(dá)式,并求該廠的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t、硝酸鹽18t;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元.
(1)設(shè)生產(chǎn)甲種肥料x車皮,乙種肥料y車皮,寫出x,y滿足的線性約束條件,并畫出其相應(yīng)的平面區(qū)域;
(2)設(shè)該廠的利潤為z萬元(1)的條件下求目標(biāo)函數(shù)z=f(x,y)的表達(dá)式,并求該廠的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳實(shí)驗(yàn)學(xué)校高二(上)第一階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

一化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t、硝酸鹽18t;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元.
(1)設(shè)生產(chǎn)甲種肥料x車皮,乙種肥料y車皮,寫出x,y滿足的線性約束條件,并畫出其相應(yīng)的平面區(qū)域;
(2)設(shè)該廠的利潤為z萬元(1)的條件下求目標(biāo)函數(shù)z=f(x,y)的表達(dá)式,并求該廠的最大利潤.

查看答案和解析>>

同步練習(xí)冊答案