15.我國南北朝時代的數(shù)學(xué)家祖暅提出體積的計(jì)算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個形狀不規(guī)則的封閉圖形,圖2是一個上底為l的梯形,且當(dāng)實(shí)數(shù)t取[0,3]上的任意值時,直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為$\frac{9}{2}$.

分析 根據(jù)祖暅原理,可得圖1的面積=梯形的面積,即可得出結(jié)論.

解答 解:根據(jù)祖暅原理,可得圖1的面積=梯形的面積=$\frac{(1+2)×3}{2}$=$\frac{9}{2}$.
故答案為$\frac{9}{2}$.

點(diǎn)評 此題考查了梯形的面積公式,還考查了學(xué)生空間的想象能力及計(jì)算技能.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=lnx+(e-a)x-b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則$\frac{a}$的最小值為-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,且F2為拋物線y2=24x的焦點(diǎn),設(shè)點(diǎn)P為兩曲線的一個公共點(diǎn),若△PF1F2的面積為36$\sqrt{6}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l過拋物線y2=2px(p>0)的焦點(diǎn)且與該拋物線的軸垂直,若直線l與該拋物線圍成的封閉圖形的面積為$\frac{3}{2}$,則p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐P-ABC的四個頂點(diǎn)都在半徑為4的球面上,且三條側(cè)棱兩兩互相垂直,則該三棱錐側(cè)面積的最大值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)y=ax+f(x)在區(qū)間(0,e]上的最大值為-4,求實(shí)數(shù)a的值;
(2)若函數(shù)y=ag(2x)+bg(x)-x有兩個不同的零點(diǎn)x1,x2,x0是x1,x2的等差中項(xiàng),證明:當(dāng)a>0時,不等式2ag (2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,m).若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m的值為(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},則M∩N=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從1、2、3、4、5、6中任三個數(shù),則所取的三個數(shù)按一定的順序可排成等差數(shù)列的概率為(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{20}$

查看答案和解析>>

同步練習(xí)冊答案