在2014年APEC會(huì)議期間,北京某旅行社為某旅行團(tuán)包機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為12000元,旅行團(tuán)中每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)在30人或30人以下,每張機(jī)票收費(fèi)800元;若旅行團(tuán)的人數(shù)多于30人,則給予優(yōu)惠,每多1人,旅行團(tuán)每張機(jī)票減少20元,但旅行團(tuán)的人數(shù)最多不超過45人,當(dāng)旅行社獲得的機(jī)票利潤(rùn)最大時(shí),旅行團(tuán)的人數(shù)是( 。
A、32人B、35人
C、40人D、45 人
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)旅行團(tuán)的人數(shù)為x人,每張機(jī)票收費(fèi)為m元,旅行社獲得的機(jī)票利潤(rùn)為y,根據(jù)條件建立函數(shù)關(guān)系,利用一元二次函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:設(shè)旅行團(tuán)的人數(shù)為x人,每張機(jī)票收費(fèi)為m元,旅行社獲得的機(jī)票利潤(rùn)為y,
當(dāng)1≤x≤30且x∈N時(shí),m=800,ymax=800×30-12000=12000,
當(dāng)30<x≤45且x∈N時(shí),m=800-20(x-30)=1400-20x,
則y=(1400-20x)x-12000=-20x2+1400x-12000,對(duì)應(yīng)的拋物線開口向下,
因?yàn)閤∈N,所以當(dāng)x=-
1400
2×(-20)
=35,函數(shù)取得最大值.
所以當(dāng)旅行社人數(shù)為35時(shí),旅行社可獲得最大利潤(rùn).
故選:B
點(diǎn)評(píng):本題考查函數(shù)的應(yīng)用問題,考查函數(shù)的最大值的應(yīng)用,根據(jù)條件建立函數(shù)關(guān)系,利用一元二次函數(shù)的最值性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
sinx
tanx

(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)已知α∈(0,
π
2
)
,且f(α)=
5
13
,求f(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩直線2x-y-1=0和2x+y-7=0的交點(diǎn),且與坐標(biāo)軸圍成三角形,面積為4的直線方程是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,使得|x|<1”的否定是(  )
A、?x∈R,都有|x|<1
B、?x∈R,都有|x|<1
C、?x∈R,都有x≤-1或x≥1
D、?x∈R,都有|x|≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x2-2x+2a)(a>0且a≠1)的定義域?yàn)閇0,1].
(1)求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得對(duì)任意的x∈[0,1],關(guān)于x的不等式f(x)≥
5x-1
都成立?若存在,求出a的所有可能取值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-x2焦點(diǎn)坐標(biāo)是( 。
A、(0,-1)
B、(0,-
1
2
C、(0,-
1
4
D、(0,-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

商場(chǎng)銷售的某種飲品每件成本為20元,售價(jià)36元.現(xiàn)廠家為了提高收益,對(duì)該飲品進(jìn)行促銷,具體規(guī)則如下:顧客每購(gòu)買一件飲品,當(dāng)即從放有編號(hào)分別為1、2、3、4、5、6的六個(gè)規(guī)格的小球的密封箱中連續(xù)有放回地摸取三次,若三次取出的小球編號(hào)相同,則獲一等獎(jiǎng);若三次取出小球的編號(hào)是連號(hào)(不考慮順序),則獲二等獎(jiǎng);其它情況無獎(jiǎng).
(1)求某顧客購(gòu)買1件該飲品,獲得獎(jiǎng)勵(lì)的概率;
(2)若獎(jiǎng)勵(lì)為返還現(xiàn)金,顧客獲一次一等獎(jiǎng),獎(jiǎng)金數(shù)是x元,若獲一次二等獎(jiǎng),獎(jiǎng)金是一等獎(jiǎng)獎(jiǎng)金的一半,統(tǒng)計(jì)表明:每天的銷量y(件)與一等獎(jiǎng)的獎(jiǎng)金額x(元)的關(guān)系式y(tǒng)=
x
4
+24.問:x設(shè)定為多少最佳?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
x≤3
則z=3x-y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
1
x
-
x
)6
的展開式中,常數(shù)項(xiàng)是
 
.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案