已知f(x)是定義在R上的偶函數(shù)且它圖象是一條連續(xù)不斷的曲線,當(dāng)x>0時,f'(x)<0,若f(x)>f(1),則x的取值范圍是


  1. A.
    (-1,1)
  2. B.
    (0,1)∪(-1,0)
  3. C.
    [-1,1]
  4. D.
    (-∞,1)∪(1,+∞)
A
分析:根據(jù)題意結(jié)合函數(shù)的性質(zhì)可以畫出函數(shù)的圖象,進而得到答案.
解答:解:根據(jù)題意可得:已知f(x)是定義在R上的偶函數(shù),
并且當(dāng)x>0時,f'(x)<0,
可得函數(shù)f(x)圖象如圖所示:
因為f(x)>f(1),所以|x|<1,即-1<x<1.
故選A.
點評:解決此類問題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),以及利用函數(shù)的性質(zhì)畫出函數(shù)的圖象進而解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案