【題目】已知橢圓:的焦點分別為,,橢圓的離心率為,且經(jīng)過點,經(jīng)過,作平行直線,,交橢圓于兩點,和兩點,.
(1)求的方程;
(2)求四邊形面積的最大值.
【答案】(1)(2)四邊形面積最大值為6
【解析】
(1)利用離心率求得關系,再將點坐標代入橢圓方程求得即可;
(2)斜率存在時,設出方程,與橢圓方程聯(lián)立,利用根與系數(shù)關系表示出,又因為之間的距離就是到直線:的距離,可得關系式,表示出,求出S的范圍;斜率不存在時,求出四邊形的面積,綜合可得面積最大值.
解:(1)由,得,又,
解得:,,
所以的方程為:.
(2)當直線的斜率存在時,
設斜率為,設,,又,
所以直線的方程為,
由,得,
∴,,
∴
.
又,之間的距離即為到直線:的距離:,
∴四邊形面積為:,
設,
則四邊形面積為:,
∵,
∴,
∴.
當直線的斜率不存在時,四邊形面積為:,
所以四邊形面積,
因此四邊形面積最大值為6.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(其中為自然對數(shù)的底數(shù))
(1)若,且在上是增函數(shù),求的最小值;
(2)設,若對任意、恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個矩形,圓弧所在圓的圓心為O,經(jīng)測量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧上.設,矩形的面積為S.
(1)求矩形的面積S關于變量的函數(shù)關系式;
(2)求為何值時,矩形的面積S最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)在上的值域;
(3)若存在,使得成立,求的最大值.(其中自然常數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.
(1)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下列聯(lián)表:能否據(jù)此判斷有97.5%的把握認為“禮讓斑馬線”行為與駕齡有關?
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
(2)下圖是某市一主干路口監(jiān)控設備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為的折線圖:
請結合圖形和所給數(shù)據(jù)求違章駕駛員人數(shù)y與月份x之間的回歸直線方程,并預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù).
附注:參考數(shù)據(jù):,.
參考公式:,,(其中)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的方程為,其焦點為,為過焦點的拋物線的弦,過分別作拋物線的切線,,設,相交于點.
(1)求的值;
(2)如果圓的方程為,且點在圓內(nèi)部,設直線與相交于,兩點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com