一個公差不為0的等差數(shù)列{an}共有100項,首項為5,其第1、4、16項分別為正項等比數(shù)列{bn}的第1、3、5項.

(1)求{an}各項的和S;

(2)記{bn}的末項不大于,求{bn}項數(shù)的最值N;

(3)記{an}前n項和為Sn,{bn}前N項和為Tn,問是否存在自然數(shù)m,使Sm=Tn.

解:設{an}公差為d,a1=5,a4=5+3d,a16=5+15d分別為{bn}的第1、3、5項,

∴(5+3d)2=5(5+15d),得d=5或d=0(舍).

(1)S=100×5+×5=25 250.

(2)∵b1=a1=5,b3=a4=20,∴q2==4.

∴q=2或q=-2(舍),bn=5·2n-1.

令5·2n-1

∴2n≤5 050.又212<5 050<213,即n<13,且212=4 096<5 050,

∴n的最大值N=12.

(3)設有Sm=Tn,即5m+×5=5(212-1),整理得m2+m-8 190=0,

∴m=90<100或m=-91(舍),即存在m=90使S90=T12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、一個樣本容量為10的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列{an},若a3=8,且a1,a3,a7成等比數(shù)列,則此樣本的平均數(shù)和中位數(shù)分別是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個公差不為0的等差數(shù)列{an},首項為1,其第1、4、16項分別為正項等比數(shù)列{bn},的第1、3、5項.
(1)求數(shù)列{an},與{bn}的通項公式;
(2)記數(shù)列{an},與{bn}的前n項和分別為Sn與Tn,試求正整數(shù)m,使得Sm=T12;
(3)求證:數(shù)列{bn}中任意三項都不能構成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個樣本容量為9的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列{an},若a3=8,且a1,a3,a7成等比數(shù)列,則此樣本的中位數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個公差不為0的等差數(shù)列{an},首項為1,其第1、4、16項分別為正項等比數(shù)列{bn}的第1,3,5項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記數(shù)列{an}與{bn}的前n項和分別為Sn與Tn,試求正整數(shù)m,使得Sm=T12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個樣本容量為20的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列{an},若a3=8且前4項和S4=28,則此樣本的平均數(shù)和中位數(shù)分別是( 。
A、22,23B、23,22C、23,23D、23,24

查看答案和解析>>

同步練習冊答案