已知函數(shù)f(x)=x2+(lga+2)x+lgb滿足f(-1)=-2且對于任意x∈R,恒有f(x)≥2x成立.
(1)求實(shí)數(shù)a,b的值;
(2)解不等式f(x)<x+5.
分析:(1)由f(-1)=-2,代入函數(shù)解析式得到關(guān)于lga與lgb的等式記作①,化簡后得到關(guān)于a與b的等式記作②,又因?yàn)閒(x)≥2x恒成立,把f(x)的解析式代入后,令△≤0得到關(guān)于lga與lgb的不等式,把①代入后得到關(guān)于lgb的不等式,根據(jù)平方大于等于0,即可求出b的值,把b的值代入②即可求出a的值;
(2)由(1)求出的a與b的值代入f(x)的解析式中即可確定出f(x)的解析式,然后把f(x)的解析式代入到f(x)<x+5中,得到關(guān)于x的一元二次不等式,求出一元二次不等式的解集即可.
解答:解(1)由f(-1)=-2知,lgb-lga+1=0①,所以
a
b
=10
②.
又f(x)≥2x恒成立,f(x)-2x≥0恒成立,
則有x2+x•lga+lgb≥0恒成立,
故△=(lga)2-4lgb≤0,
將①式代入上式得:(lgb)2-2lgb+1≤0,即(lgb-1)2≤0,
故lgb=1即b=10,代入②得,a=100;
(2)由(1)知f(x)=x2+4x+1,f(x)<x+5,
即x2+4x+1<x+5,
所以x2+3x-4<0,
解得-4<x<1,
因此不等式的解集為{x|-4<x<1}.
點(diǎn)評:此題考查學(xué)生掌握不等式恒成立時所滿足的條件,以及會求一元二次不等式的解集,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案