在平面直角坐標系中,已知圓:和直線:,為上一動點,,為圓與軸的兩個交點,直線,與圓的另一個交點分別為.
(1)若點的坐標為(4,2),求直線方程;
(2)求證直線過定點,并求出此定點的坐標.
(1);(2)證明過程詳見解析,.
解析試題分析:本題考查圓與直線的標準方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、分析問題解決問題的能力.第一問,先求出圓與軸的2個交點的坐標,列出的直線方程,讓它們與圓聯(lián)立得出交點坐標,利用兩點式寫出直線的方程;第二問,設(shè)出動點,寫出直線的方程,與圓聯(lián)立得出點坐標,寫出直線的方程,可以看出恒過定點.
試題解析:(1)當,則,.
直線的方程:,
解
得.
直線的方程:,
解,
得.
由兩點式,得直線方程為:. 6分
(2)設(shè),則直線的方程:,直線的方程:
由得
由得
當時,,則直線:
化簡得,恒過定點
當時,,直線:, 恒過定點
故直線過定點.………12分
考點:1.直線與圓的交點坐標的求法;2.兩點式方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:以點C(t,)(t∈R,t≠0)為圓心的圓與軸交于點O,A,與y軸交于點O,B,其中O為原點
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=–2x+4與圓C交于點M,N,若OM=ON,求圓C的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓,點.
(1)求圓心在直線上,經(jīng)過點,且與圓相外切的圓的方程;
(2)若過點的直線與圓交于兩點,且圓弧恰為圓周長的,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓:.
(Ⅰ)若圓與軸相切,求圓的方程;
(Ⅱ)已知,圓C與軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點.問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點,,直線(為常數(shù)).
(1)若點、到直線的距離相等,求實數(shù)的值;
(2)對于上任意一點,恒為銳角,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于,兩點,且.
(Ⅰ)求圓的直角坐標方程,并求出圓心坐標和半徑;
(Ⅱ)求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com